1997-12
AUTHORS ABSTRACTWe show that wearless atomic friction, recently observed by AFM techniques, is well desribed by the mechanism of “plucking of atoms” proposed by Tomlinson in 1929. Our results for a single-asperity contact yield a satisfactory fit of the experimental data. For extended contact areas, the relative orientation of the crystal lattices and the resulting misfit becomes important. The misfit gives rise to the formation of domains where the two surface structures are approximately in registry. The domains are separated by two sets of shift lines, crossing each other in topological defects. During quasistatic sliding, the whole domain pattern moves perpendicular to the driving force. Frictional behaviour occurs if the ratio of the coupling strength of the surface atoms to the bulk of the body to the potential barrier for sliding is less than a critical value. Dissipation and friction hysteresis are caused by irreversible jumps of these topological defects. The friction force depends strongly on both the sliding direction and the misfit angle. More... »
PAGES669-674
http://scigraph.springernature.com/pub.10.1007/s002570050506
DOIhttp://dx.doi.org/10.1007/s002570050506
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038259537
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland",
"id": "http://www.grid.ac/institutes/grid.6612.3",
"name": [
"Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
],
"type": "Organization"
},
"familyName": "Gyalog",
"givenName": "Tibor",
"id": "sg:person.012036166473.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036166473.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland",
"id": "http://www.grid.ac/institutes/grid.6612.3",
"name": [
"Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
],
"type": "Organization"
},
"familyName": "Thomas",
"givenName": "Harry",
"id": "sg:person.0711120037.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
],
"type": "Person"
}
],
"datePublished": "1997-12",
"datePublishedReg": "1997-12-01",
"description": "We show that wearless atomic friction, recently observed by AFM techniques, is well desribed by the mechanism of \u201cplucking of atoms\u201d proposed by Tomlinson in 1929. Our results for a single-asperity contact yield a satisfactory fit of the experimental data. For extended contact areas, the relative orientation of the crystal lattices and the resulting misfit becomes important. The misfit gives rise to the formation of domains where the two surface structures are approximately in registry. The domains are separated by two sets of shift lines, crossing each other in topological defects. During quasistatic sliding, the whole domain pattern moves perpendicular to the driving force. Frictional behaviour occurs if the ratio of the coupling strength of the surface atoms to the bulk of the body to the potential barrier for sliding is less than a critical value. Dissipation and friction hysteresis are caused by irreversible jumps of these topological defects. The friction force depends strongly on both the sliding direction and the misfit angle.",
"genre": "article",
"id": "sg:pub.10.1007/s002570050506",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1285002",
"issn": [
"0722-3277",
"1431-584X"
],
"name": "Zeitschrift f\u00fcr Physik B Condensed Matter",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "104"
}
],
"keywords": [
"atomic friction",
"topological defects",
"formation of domains",
"surface atoms",
"coupling strength",
"AFM techniques",
"domain patterns",
"potential barrier",
"surface structure",
"irreversible jumps",
"single asperity contact",
"atoms",
"crystal lattice",
"extended contact area",
"experimental data",
"misfit angle",
"relative orientation",
"satisfactory fit",
"shift line",
"critical value",
"friction hysteresis",
"lattice",
"dissipation",
"friction force",
"bulk",
"defects",
"angle",
"force",
"hysteresis",
"jump",
"fit",
"structure",
"misfit",
"direction",
"orientation",
"technique",
"formation",
"friction",
"lines",
"barriers",
"ratio",
"strength",
"contact area",
"set",
"values",
"behavior",
"contact",
"results",
"mechanism",
"domain",
"frictional behavior",
"data",
"sliding",
"Tomlinson",
"patterns",
"body",
"area",
"registry"
],
"name": "Atomic friction",
"pagination": "669-674",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038259537"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002570050506"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002570050506",
"https://app.dimensions.ai/details/publication/pub.1038259537"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_301.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s002570050506"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050506'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050506'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050506'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050506'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
21 PREDICATES
84 URIs
76 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s002570050506 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | Nb67da652828842c69ff519c1beac680b |
4 | ″ | schema:datePublished | 1997-12 |
5 | ″ | schema:datePublishedReg | 1997-12-01 |
6 | ″ | schema:description | We show that wearless atomic friction, recently observed by AFM techniques, is well desribed by the mechanism of “plucking of atoms” proposed by Tomlinson in 1929. Our results for a single-asperity contact yield a satisfactory fit of the experimental data. For extended contact areas, the relative orientation of the crystal lattices and the resulting misfit becomes important. The misfit gives rise to the formation of domains where the two surface structures are approximately in registry. The domains are separated by two sets of shift lines, crossing each other in topological defects. During quasistatic sliding, the whole domain pattern moves perpendicular to the driving force. Frictional behaviour occurs if the ratio of the coupling strength of the surface atoms to the bulk of the body to the potential barrier for sliding is less than a critical value. Dissipation and friction hysteresis are caused by irreversible jumps of these topological defects. The friction force depends strongly on both the sliding direction and the misfit angle. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N3848b68a89364f92959e78aa9227293f |
11 | ″ | ″ | Nff138c3f9cf44366a7b332121aba8c3f |
12 | ″ | ″ | sg:journal.1285002 |
13 | ″ | schema:keywords | AFM techniques |
14 | ″ | ″ | Tomlinson |
15 | ″ | ″ | angle |
16 | ″ | ″ | area |
17 | ″ | ″ | atomic friction |
18 | ″ | ″ | atoms |
19 | ″ | ″ | barriers |
20 | ″ | ″ | behavior |
21 | ″ | ″ | body |
22 | ″ | ″ | bulk |
23 | ″ | ″ | contact |
24 | ″ | ″ | contact area |
25 | ″ | ″ | coupling strength |
26 | ″ | ″ | critical value |
27 | ″ | ″ | crystal lattice |
28 | ″ | ″ | data |
29 | ″ | ″ | defects |
30 | ″ | ″ | direction |
31 | ″ | ″ | dissipation |
32 | ″ | ″ | domain |
33 | ″ | ″ | domain patterns |
34 | ″ | ″ | experimental data |
35 | ″ | ″ | extended contact area |
36 | ″ | ″ | fit |
37 | ″ | ″ | force |
38 | ″ | ″ | formation |
39 | ″ | ″ | formation of domains |
40 | ″ | ″ | friction |
41 | ″ | ″ | friction force |
42 | ″ | ″ | friction hysteresis |
43 | ″ | ″ | frictional behavior |
44 | ″ | ″ | hysteresis |
45 | ″ | ″ | irreversible jumps |
46 | ″ | ″ | jump |
47 | ″ | ″ | lattice |
48 | ″ | ″ | lines |
49 | ″ | ″ | mechanism |
50 | ″ | ″ | misfit |
51 | ″ | ″ | misfit angle |
52 | ″ | ″ | orientation |
53 | ″ | ″ | patterns |
54 | ″ | ″ | potential barrier |
55 | ″ | ″ | ratio |
56 | ″ | ″ | registry |
57 | ″ | ″ | relative orientation |
58 | ″ | ″ | results |
59 | ″ | ″ | satisfactory fit |
60 | ″ | ″ | set |
61 | ″ | ″ | shift line |
62 | ″ | ″ | single asperity contact |
63 | ″ | ″ | sliding |
64 | ″ | ″ | strength |
65 | ″ | ″ | structure |
66 | ″ | ″ | surface atoms |
67 | ″ | ″ | surface structure |
68 | ″ | ″ | technique |
69 | ″ | ″ | topological defects |
70 | ″ | ″ | values |
71 | ″ | schema:name | Atomic friction |
72 | ″ | schema:pagination | 669-674 |
73 | ″ | schema:productId | N76c410c92f6443ef86f3d11a865ee4d8 |
74 | ″ | ″ | Nefac7e33dc7246c0a8a2cca5f7def8ec |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038259537 |
76 | ″ | ″ | https://doi.org/10.1007/s002570050506 |
77 | ″ | schema:sdDatePublished | 2022-06-01T22:01 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | Nc374697302c44ae786eff81fc6c3a5c9 |
80 | ″ | schema:url | https://doi.org/10.1007/s002570050506 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N3848b68a89364f92959e78aa9227293f | schema:volumeNumber | 104 |
85 | ″ | rdf:type | schema:PublicationVolume |
86 | N76c410c92f6443ef86f3d11a865ee4d8 | schema:name | doi |
87 | ″ | schema:value | 10.1007/s002570050506 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N856f7ab340b94016be51b8ababea228f | rdf:first | sg:person.0711120037.13 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nb67da652828842c69ff519c1beac680b | rdf:first | sg:person.012036166473.12 |
92 | ″ | rdf:rest | N856f7ab340b94016be51b8ababea228f |
93 | Nc374697302c44ae786eff81fc6c3a5c9 | schema:name | Springer Nature - SN SciGraph project |
94 | ″ | rdf:type | schema:Organization |
95 | Nefac7e33dc7246c0a8a2cca5f7def8ec | schema:name | dimensions_id |
96 | ″ | schema:value | pub.1038259537 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | Nff138c3f9cf44366a7b332121aba8c3f | schema:issueNumber | 4 |
99 | ″ | rdf:type | schema:PublicationIssue |
100 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Chemical Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Physical Chemistry (incl. Structural) |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:journal.1285002 | schema:issn | 0722-3277 |
107 | ″ | ″ | 1431-584X |
108 | ″ | schema:name | Zeitschrift für Physik B Condensed Matter |
109 | ″ | schema:publisher | Springer Nature |
110 | ″ | rdf:type | schema:Periodical |
111 | sg:person.012036166473.12 | schema:affiliation | grid-institutes:grid.6612.3 |
112 | ″ | schema:familyName | Gyalog |
113 | ″ | schema:givenName | Tibor |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036166473.12 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.0711120037.13 | schema:affiliation | grid-institutes:grid.6612.3 |
117 | ″ | schema:familyName | Thomas |
118 | ″ | schema:givenName | Harry |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13 |
120 | ″ | rdf:type | schema:Person |
121 | grid-institutes:grid.6612.3 | schema:alternateName | Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland |
122 | ″ | schema:name | Institut für Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland |
123 | ″ | rdf:type | schema:Organization |