Stability of bipolarons in the presence of a magnetic field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

J.T. Devreese, F. Brosens

ABSTRACT

The stability of large Fröhlich bipolarons in the presence of a static magnetic field is investigated with the path integral formalism. We find that the application of a magnetic field (characterized by the cyclotron frequence ωc) favors bipolaron formation: (i) the critical electronphonon coupling parameter αc (above which the bipolaron is stable) decreases with increasing ωc and (ii) the critical Coulomb repulsion strength Uc (below which the bipolaron is stable) increases with increasing ωc. The binding energy and the corresponding variational parameters are calculated as a function of α, U and ωc. Analytical results are obtained in various limiting cases. In the limit of strong electron-phonon coupling (α ≫ 1) we obtain for ωc ≫ 1 that Eestim ⋍ Eestim(ωc = 0) + c(u)ωc/α4 with c(u) an explicitly calculated constant, dependent on the ratio u = U/α where U is the strength of the Coulomb repulsion. This relation applies both in 2D and in 3D, but with a different expression for c(u). For ωc ≫ α2≫ 1 we find in 3D Eestim ⋍ ωc - α2A(u) ln2(ωc/α2), (also with an explicit analytical expression for A(u)) whereas in 2D Eestim2D ⋍ ωc - α√ωcπ(u-2-√2)/2. The validity region of the Feynman-Jensen inequality for the present problem, bipolarons in a magnetic field, remains to be examined. More... »

PAGES

605-612

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002570050496

DOI

http://dx.doi.org/10.1007/s002570050496

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023372029


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb", 
          "id": "http://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devreese", 
        "givenName": "J.T.", 
        "id": "sg:person.013212177045.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212177045.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb", 
          "id": "http://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brosens", 
        "givenName": "F.", 
        "id": "sg:person.01164270616.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164270616.04"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "The stability of large Fr\u00f6hlich bipolarons in the presence of a static magnetic field is investigated with the path integral formalism. We find that the application of a magnetic field (characterized by the cyclotron frequence \u03c9c) favors bipolaron formation: (i) the critical electronphonon coupling parameter \u03b1c (above which the bipolaron is stable) decreases with increasing \u03c9c and (ii) the critical Coulomb repulsion strength Uc (below which the bipolaron is stable) increases with increasing \u03c9c. The binding energy and the corresponding variational parameters are calculated as a function of \u03b1, U and \u03c9c. Analytical results are obtained in various limiting cases. In the limit of strong electron-phonon coupling (\u03b1 \u226b 1) we obtain for \u03c9c \u226b 1 that Eestim \u22cd Eestim(\u03c9c = 0) + c(u)\u03c9c/\u03b14 with c(u) an explicitly calculated constant, dependent on the ratio u = U/\u03b1 where U is the strength of the Coulomb repulsion. This relation applies both in 2D and in 3D, but with a different expression for c(u). For \u03c9c \u226b \u03b12\u226b 1 we find in 3D Eestim \u22cd \u03c9c - \u03b12A(u) ln2(\u03c9c/\u03b12), (also with an explicit analytical expression for A(u)) whereas in 2D Eestim2D \u22cd \u03c9c - \u03b1\u221a\u03c9c\u03c0(u-2-\u221a2)/2. The validity region of the Feynman-Jensen inequality for the present problem, bipolarons in a magnetic field, remains to be examined.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002570050496", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "keywords": [
      "magnetic field", 
      "path integral formalism", 
      "integral formalism", 
      "variational parameters", 
      "static magnetic field", 
      "electron-phonon coupling", 
      "stability of bipolarons", 
      "validity region", 
      "strong electron-phonon coupling", 
      "\u03c9c", 
      "Coulomb repulsion", 
      "analytical results", 
      "bipolaron formation", 
      "present problem", 
      "ratio U", 
      "bipolarons", 
      "field", 
      "Fr\u00f6hlich bipolaron", 
      "formalism", 
      "electronphonon", 
      "inequality", 
      "problem", 
      "stability", 
      "\u03b1c", 
      "parameters", 
      "coupling", 
      "repulsion", 
      "applications", 
      "limit", 
      "energy", 
      "function", 
      "different expressions", 
      "cases", 
      "results", 
      "relation", 
      "presence", 
      "strength", 
      "region", 
      "UC", 
      "expression", 
      "formation", 
      "\u03b14"
    ], 
    "name": "Stability of bipolarons in the presence of a magnetic field", 
    "pagination": "605-612", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023372029"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002570050496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002570050496", 
      "https://app.dimensions.ai/details/publication/pub.1023372029"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_288.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002570050496"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      68 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002570050496 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0f50c954b1e44c1dabee81c1683bf9ab
4 schema:datePublished 1997-12
5 schema:datePublishedReg 1997-12-01
6 schema:description The stability of large Fröhlich bipolarons in the presence of a static magnetic field is investigated with the path integral formalism. We find that the application of a magnetic field (characterized by the cyclotron frequence ωc) favors bipolaron formation: (i) the critical electronphonon coupling parameter αc (above which the bipolaron is stable) decreases with increasing ωc and (ii) the critical Coulomb repulsion strength Uc (below which the bipolaron is stable) increases with increasing ωc. The binding energy and the corresponding variational parameters are calculated as a function of α, U and ωc. Analytical results are obtained in various limiting cases. In the limit of strong electron-phonon coupling (α ≫ 1) we obtain for ωc ≫ 1 that Eestim ⋍ Eestim(ωc = 0) + c(u)ωc/α4 with c(u) an explicitly calculated constant, dependent on the ratio u = U/α where U is the strength of the Coulomb repulsion. This relation applies both in 2D and in 3D, but with a different expression for c(u). For ωc ≫ α2≫ 1 we find in 3D Eestim ⋍ ωc - α2A(u) ln2(ωc/α2), (also with an explicit analytical expression for A(u)) whereas in 2D Eestim2D ⋍ ωc - α√ωcπ(u-2-√2)/2. The validity region of the Feynman-Jensen inequality for the present problem, bipolarons in a magnetic field, remains to be examined.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N8946407342b347ad8de17b3be0e897ec
11 Nb0c9373cb5664284bf1f6b4bf9cfbbec
12 sg:journal.1285002
13 schema:keywords Coulomb repulsion
14 Fröhlich bipolaron
15 UC
16 analytical results
17 applications
18 bipolaron formation
19 bipolarons
20 cases
21 coupling
22 different expressions
23 electron-phonon coupling
24 electronphonon
25 energy
26 expression
27 field
28 formalism
29 formation
30 function
31 inequality
32 integral formalism
33 limit
34 magnetic field
35 parameters
36 path integral formalism
37 presence
38 present problem
39 problem
40 ratio U
41 region
42 relation
43 repulsion
44 results
45 stability
46 stability of bipolarons
47 static magnetic field
48 strength
49 strong electron-phonon coupling
50 validity region
51 variational parameters
52 α4
53 αc
54 ωc
55 schema:name Stability of bipolarons in the presence of a magnetic field
56 schema:pagination 605-612
57 schema:productId N61e5da9b8d894dcda9f25bb296719a5d
58 Nd99ac64c5b014adb992aecf75511b272
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023372029
60 https://doi.org/10.1007/s002570050496
61 schema:sdDatePublished 2022-06-01T22:00
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ndf079d249b6d4b3da85c2cefd3d97012
64 schema:url https://doi.org/10.1007/s002570050496
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0f50c954b1e44c1dabee81c1683bf9ab rdf:first sg:person.013212177045.46
69 rdf:rest N835df72bdc624a1c9f916b1941a1e12a
70 N61e5da9b8d894dcda9f25bb296719a5d schema:name dimensions_id
71 schema:value pub.1023372029
72 rdf:type schema:PropertyValue
73 N835df72bdc624a1c9f916b1941a1e12a rdf:first sg:person.01164270616.04
74 rdf:rest rdf:nil
75 N8946407342b347ad8de17b3be0e897ec schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 Nb0c9373cb5664284bf1f6b4bf9cfbbec schema:volumeNumber 104
78 rdf:type schema:PublicationVolume
79 Nd99ac64c5b014adb992aecf75511b272 schema:name doi
80 schema:value 10.1007/s002570050496
81 rdf:type schema:PropertyValue
82 Ndf079d249b6d4b3da85c2cefd3d97012 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
88 schema:name Materials Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1285002 schema:issn 0722-3277
91 1431-584X
92 schema:name Zeitschrift für Physik B Condensed Matter
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.01164270616.04 schema:affiliation grid-institutes:grid.5284.b
96 schema:familyName Brosens
97 schema:givenName F.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164270616.04
99 rdf:type schema:Person
100 sg:person.013212177045.46 schema:affiliation grid-institutes:grid.5284.b
101 schema:familyName Devreese
102 schema:givenName J.T.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212177045.46
104 rdf:type schema:Person
105 grid-institutes:grid.5284.b schema:alternateName Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, België
106 schema:name Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, België
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...