Ontology type: schema:ScholarlyArticle
1997-12
AUTHORS ABSTRACTThe stability of large Fröhlich bipolarons in the presence of a static magnetic field is investigated with the path integral formalism. We find that the application of a magnetic field (characterized by the cyclotron frequence ωc) favors bipolaron formation: (i) the critical electronphonon coupling parameter αc (above which the bipolaron is stable) decreases with increasing ωc and (ii) the critical Coulomb repulsion strength Uc (below which the bipolaron is stable) increases with increasing ωc. The binding energy and the corresponding variational parameters are calculated as a function of α, U and ωc. Analytical results are obtained in various limiting cases. In the limit of strong electron-phonon coupling (α ≫ 1) we obtain for ωc ≫ 1 that Eestim ⋍ Eestim(ωc = 0) + c(u)ωc/α4 with c(u) an explicitly calculated constant, dependent on the ratio u = U/α where U is the strength of the Coulomb repulsion. This relation applies both in 2D and in 3D, but with a different expression for c(u). For ωc ≫ α2≫ 1 we find in 3D Eestim ⋍ ωc - α2A(u) ln2(ωc/α2), (also with an explicit analytical expression for A(u)) whereas in 2D Eestim2D ⋍ ωc - α√ωcπ(u-2-√2)/2. The validity region of the Feynman-Jensen inequality for the present problem, bipolarons in a magnetic field, remains to be examined. More... »
PAGES605-612
http://scigraph.springernature.com/pub.10.1007/s002570050496
DOIhttp://dx.doi.org/10.1007/s002570050496
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023372029
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb",
"id": "http://www.grid.ac/institutes/grid.5284.b",
"name": [
"Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb"
],
"type": "Organization"
},
"familyName": "Devreese",
"givenName": "J.T.",
"id": "sg:person.013212177045.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212177045.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb",
"id": "http://www.grid.ac/institutes/grid.5284.b",
"name": [
"Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, Belgi\u00eb"
],
"type": "Organization"
},
"familyName": "Brosens",
"givenName": "F.",
"id": "sg:person.01164270616.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164270616.04"
],
"type": "Person"
}
],
"datePublished": "1997-12",
"datePublishedReg": "1997-12-01",
"description": "The stability of large Fr\u00f6hlich bipolarons in the presence of a static magnetic field is investigated with the path integral formalism. We find that the application of a magnetic field (characterized by the cyclotron frequence \u03c9c) favors bipolaron formation: (i) the critical electronphonon coupling parameter \u03b1c (above which the bipolaron is stable) decreases with increasing \u03c9c and (ii) the critical Coulomb repulsion strength Uc (below which the bipolaron is stable) increases with increasing \u03c9c. The binding energy and the corresponding variational parameters are calculated as a function of \u03b1, U and \u03c9c. Analytical results are obtained in various limiting cases. In the limit of strong electron-phonon coupling (\u03b1 \u226b 1) we obtain for \u03c9c \u226b 1 that Eestim \u22cd Eestim(\u03c9c = 0) + c(u)\u03c9c/\u03b14 with c(u) an explicitly calculated constant, dependent on the ratio u = U/\u03b1 where U is the strength of the Coulomb repulsion. This relation applies both in 2D and in 3D, but with a different expression for c(u). For \u03c9c \u226b \u03b12\u226b 1 we find in 3D Eestim \u22cd \u03c9c - \u03b12A(u) ln2(\u03c9c/\u03b12), (also with an explicit analytical expression for A(u)) whereas in 2D Eestim2D \u22cd \u03c9c - \u03b1\u221a\u03c9c\u03c0(u-2-\u221a2)/2. The validity region of the Feynman-Jensen inequality for the present problem, bipolarons in a magnetic field, remains to be examined.",
"genre": "article",
"id": "sg:pub.10.1007/s002570050496",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1285002",
"issn": [
"0722-3277",
"1431-584X"
],
"name": "Zeitschrift f\u00fcr Physik B Condensed Matter",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "104"
}
],
"keywords": [
"magnetic field",
"path integral formalism",
"integral formalism",
"variational parameters",
"static magnetic field",
"electron-phonon coupling",
"stability of bipolarons",
"validity region",
"strong electron-phonon coupling",
"\u03c9c",
"Coulomb repulsion",
"analytical results",
"bipolaron formation",
"present problem",
"ratio U",
"bipolarons",
"field",
"Fr\u00f6hlich bipolaron",
"formalism",
"electronphonon",
"inequality",
"problem",
"stability",
"\u03b1c",
"parameters",
"coupling",
"repulsion",
"applications",
"limit",
"energy",
"function",
"different expressions",
"cases",
"results",
"relation",
"presence",
"strength",
"region",
"UC",
"expression",
"formation",
"\u03b14"
],
"name": "Stability of bipolarons in the presence of a magnetic field",
"pagination": "605-612",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023372029"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002570050496"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002570050496",
"https://app.dimensions.ai/details/publication/pub.1023372029"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_288.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s002570050496"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050496'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
21 PREDICATES
68 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s002570050496 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N0f50c954b1e44c1dabee81c1683bf9ab |
4 | ″ | schema:datePublished | 1997-12 |
5 | ″ | schema:datePublishedReg | 1997-12-01 |
6 | ″ | schema:description | The stability of large Fröhlich bipolarons in the presence of a static magnetic field is investigated with the path integral formalism. We find that the application of a magnetic field (characterized by the cyclotron frequence ωc) favors bipolaron formation: (i) the critical electronphonon coupling parameter αc (above which the bipolaron is stable) decreases with increasing ωc and (ii) the critical Coulomb repulsion strength Uc (below which the bipolaron is stable) increases with increasing ωc. The binding energy and the corresponding variational parameters are calculated as a function of α, U and ωc. Analytical results are obtained in various limiting cases. In the limit of strong electron-phonon coupling (α ≫ 1) we obtain for ωc ≫ 1 that Eestim ⋍ Eestim(ωc = 0) + c(u)ωc/α4 with c(u) an explicitly calculated constant, dependent on the ratio u = U/α where U is the strength of the Coulomb repulsion. This relation applies both in 2D and in 3D, but with a different expression for c(u). For ωc ≫ α2≫ 1 we find in 3D Eestim ⋍ ωc - α2A(u) ln2(ωc/α2), (also with an explicit analytical expression for A(u)) whereas in 2D Eestim2D ⋍ ωc - α√ωcπ(u-2-√2)/2. The validity region of the Feynman-Jensen inequality for the present problem, bipolarons in a magnetic field, remains to be examined. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N8946407342b347ad8de17b3be0e897ec |
11 | ″ | ″ | Nb0c9373cb5664284bf1f6b4bf9cfbbec |
12 | ″ | ″ | sg:journal.1285002 |
13 | ″ | schema:keywords | Coulomb repulsion |
14 | ″ | ″ | Fröhlich bipolaron |
15 | ″ | ″ | UC |
16 | ″ | ″ | analytical results |
17 | ″ | ″ | applications |
18 | ″ | ″ | bipolaron formation |
19 | ″ | ″ | bipolarons |
20 | ″ | ″ | cases |
21 | ″ | ″ | coupling |
22 | ″ | ″ | different expressions |
23 | ″ | ″ | electron-phonon coupling |
24 | ″ | ″ | electronphonon |
25 | ″ | ″ | energy |
26 | ″ | ″ | expression |
27 | ″ | ″ | field |
28 | ″ | ″ | formalism |
29 | ″ | ″ | formation |
30 | ″ | ″ | function |
31 | ″ | ″ | inequality |
32 | ″ | ″ | integral formalism |
33 | ″ | ″ | limit |
34 | ″ | ″ | magnetic field |
35 | ″ | ″ | parameters |
36 | ″ | ″ | path integral formalism |
37 | ″ | ″ | presence |
38 | ″ | ″ | present problem |
39 | ″ | ″ | problem |
40 | ″ | ″ | ratio U |
41 | ″ | ″ | region |
42 | ″ | ″ | relation |
43 | ″ | ″ | repulsion |
44 | ″ | ″ | results |
45 | ″ | ″ | stability |
46 | ″ | ″ | stability of bipolarons |
47 | ″ | ″ | static magnetic field |
48 | ″ | ″ | strength |
49 | ″ | ″ | strong electron-phonon coupling |
50 | ″ | ″ | validity region |
51 | ″ | ″ | variational parameters |
52 | ″ | ″ | α4 |
53 | ″ | ″ | αc |
54 | ″ | ″ | ωc |
55 | ″ | schema:name | Stability of bipolarons in the presence of a magnetic field |
56 | ″ | schema:pagination | 605-612 |
57 | ″ | schema:productId | N61e5da9b8d894dcda9f25bb296719a5d |
58 | ″ | ″ | Nd99ac64c5b014adb992aecf75511b272 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023372029 |
60 | ″ | ″ | https://doi.org/10.1007/s002570050496 |
61 | ″ | schema:sdDatePublished | 2022-06-01T22:00 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | Ndf079d249b6d4b3da85c2cefd3d97012 |
64 | ″ | schema:url | https://doi.org/10.1007/s002570050496 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N0f50c954b1e44c1dabee81c1683bf9ab | rdf:first | sg:person.013212177045.46 |
69 | ″ | rdf:rest | N835df72bdc624a1c9f916b1941a1e12a |
70 | N61e5da9b8d894dcda9f25bb296719a5d | schema:name | dimensions_id |
71 | ″ | schema:value | pub.1023372029 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | N835df72bdc624a1c9f916b1941a1e12a | rdf:first | sg:person.01164270616.04 |
74 | ″ | rdf:rest | rdf:nil |
75 | N8946407342b347ad8de17b3be0e897ec | schema:issueNumber | 4 |
76 | ″ | rdf:type | schema:PublicationIssue |
77 | Nb0c9373cb5664284bf1f6b4bf9cfbbec | schema:volumeNumber | 104 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | Nd99ac64c5b014adb992aecf75511b272 | schema:name | doi |
80 | ″ | schema:value | 10.1007/s002570050496 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Ndf079d249b6d4b3da85c2cefd3d97012 | schema:name | Springer Nature - SN SciGraph project |
83 | ″ | rdf:type | schema:Organization |
84 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Engineering |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Materials Engineering |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | sg:journal.1285002 | schema:issn | 0722-3277 |
91 | ″ | ″ | 1431-584X |
92 | ″ | schema:name | Zeitschrift für Physik B Condensed Matter |
93 | ″ | schema:publisher | Springer Nature |
94 | ″ | rdf:type | schema:Periodical |
95 | sg:person.01164270616.04 | schema:affiliation | grid-institutes:grid.5284.b |
96 | ″ | schema:familyName | Brosens |
97 | ″ | schema:givenName | F. |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164270616.04 |
99 | ″ | rdf:type | schema:Person |
100 | sg:person.013212177045.46 | schema:affiliation | grid-institutes:grid.5284.b |
101 | ″ | schema:familyName | Devreese |
102 | ″ | schema:givenName | J.T. |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212177045.46 |
104 | ″ | rdf:type | schema:Person |
105 | grid-institutes:grid.5284.b | schema:alternateName | Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, België |
106 | ″ | schema:name | Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610, Antwerpen, België |
107 | ″ | rdf:type | schema:Organization |