A formal theory of the conductivity and application to the giant magnetoresistance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

L. Sheng, Z.D. Wang, D.Y. Xing, Jian-Xin Zhu

ABSTRACT

The transport in a system with inhomogeneous elastic scattering is described in terms of a probabilityconserved Boltzmann equation. We demonstrate that the spatially varied current density depends only on the voltage drop between the ends of the sample. This fact enables us to develop a formal and general theory for the conductivity without determining the actual electric field inside the sample. The theory is first applied to multilayer systems and shown to recover the previous theory. By including the spin-dependent interface scattering and bulk scattering, we employ our theory to account for the giant magnetoresistance (MR) in magnetic granular systems with both spherical and cylindrical granules. The results obtained reproduce the experimental dependence of the MR on annealing temperature. More... »

PAGES

469-475

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002570050149

DOI

http://dx.doi.org/10.1007/s002570050149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018147043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "L.", 
        "id": "sg:person.01030353264.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030353264.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China", 
            "Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z.D.", 
        "id": "sg:person.011374710011.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China", 
            "Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "D.Y.", 
        "id": "sg:person.01264300610.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264300610.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jian-Xin", 
        "id": "sg:person.01335723032.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335723032.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "The transport in a system with inhomogeneous elastic scattering is described in terms of a probabilityconserved Boltzmann equation. We demonstrate that the spatially varied current density depends only on the voltage drop between the ends of the sample. This fact enables us to develop a formal and general theory for the conductivity without determining the actual electric field inside the sample. The theory is first applied to multilayer systems and shown to recover the previous theory. By including the spin-dependent interface scattering and bulk scattering, we employ our theory to account for the giant magnetoresistance (MR) in magnetic granular systems with both spherical and cylindrical granules. The results obtained reproduce the experimental dependence of the MR on annealing temperature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002570050149", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "keywords": [
      "giant magnetoresistance", 
      "spin-dependent interface scattering", 
      "magnetic granular system", 
      "Boltzmann equation", 
      "varied current densities", 
      "general theory", 
      "actual electric field", 
      "magnetoresistance", 
      "voltage drop", 
      "current density", 
      "granular systems", 
      "bulk scattering", 
      "formal theory", 
      "electric field", 
      "theory", 
      "elastic scattering", 
      "multilayer systems", 
      "experimental dependence", 
      "previous theories", 
      "cylindrical granules", 
      "interface scattering", 
      "conductivity", 
      "scattering", 
      "equations", 
      "system", 
      "field", 
      "temperature", 
      "dependence", 
      "drop", 
      "terms", 
      "density", 
      "applications", 
      "transport", 
      "samples", 
      "fact", 
      "results", 
      "granules", 
      "end"
    ], 
    "name": "A formal theory of the conductivity and application to the giant magnetoresistance", 
    "pagination": "469-475", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018147043"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002570050149"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002570050149", 
      "https://app.dimensions.ai/details/publication/pub.1018147043"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_305.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002570050149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      64 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002570050149 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb6f233a174354176858da6c04151d8b9
4 schema:datePublished 1997-12
5 schema:datePublishedReg 1997-12-01
6 schema:description The transport in a system with inhomogeneous elastic scattering is described in terms of a probabilityconserved Boltzmann equation. We demonstrate that the spatially varied current density depends only on the voltage drop between the ends of the sample. This fact enables us to develop a formal and general theory for the conductivity without determining the actual electric field inside the sample. The theory is first applied to multilayer systems and shown to recover the previous theory. By including the spin-dependent interface scattering and bulk scattering, we employ our theory to account for the giant magnetoresistance (MR) in magnetic granular systems with both spherical and cylindrical granules. The results obtained reproduce the experimental dependence of the MR on annealing temperature.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7c05b3cb6c5148cca0107647d2795f50
11 N86e56a6692d9494f9bace40a941041ef
12 sg:journal.1285002
13 schema:keywords Boltzmann equation
14 actual electric field
15 applications
16 bulk scattering
17 conductivity
18 current density
19 cylindrical granules
20 density
21 dependence
22 drop
23 elastic scattering
24 electric field
25 end
26 equations
27 experimental dependence
28 fact
29 field
30 formal theory
31 general theory
32 giant magnetoresistance
33 granular systems
34 granules
35 interface scattering
36 magnetic granular system
37 magnetoresistance
38 multilayer systems
39 previous theories
40 results
41 samples
42 scattering
43 spin-dependent interface scattering
44 system
45 temperature
46 terms
47 theory
48 transport
49 varied current densities
50 voltage drop
51 schema:name A formal theory of the conductivity and application to the giant magnetoresistance
52 schema:pagination 469-475
53 schema:productId N00d6860e8c72442894fd1f71a22ac408
54 N29dfdcab3cae4449a116dc72f3d4d2bd
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018147043
56 https://doi.org/10.1007/s002570050149
57 schema:sdDatePublished 2022-06-01T22:02
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N31454347a7b6441f803a5d18dd41fd23
60 schema:url https://doi.org/10.1007/s002570050149
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N00d6860e8c72442894fd1f71a22ac408 schema:name doi
65 schema:value 10.1007/s002570050149
66 rdf:type schema:PropertyValue
67 N062a5ca00e744e6b989e3c7d2c418e2e rdf:first sg:person.01264300610.97
68 rdf:rest N8e562bfb28514e2bb96131d323c4ed89
69 N29dfdcab3cae4449a116dc72f3d4d2bd schema:name dimensions_id
70 schema:value pub.1018147043
71 rdf:type schema:PropertyValue
72 N31454347a7b6441f803a5d18dd41fd23 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N7c05b3cb6c5148cca0107647d2795f50 schema:volumeNumber 100
75 rdf:type schema:PublicationVolume
76 N84c7dd5463994540bc8fe8448a864c40 rdf:first sg:person.011374710011.80
77 rdf:rest N062a5ca00e744e6b989e3c7d2c418e2e
78 N86e56a6692d9494f9bace40a941041ef schema:issueNumber 3
79 rdf:type schema:PublicationIssue
80 N8e562bfb28514e2bb96131d323c4ed89 rdf:first sg:person.01335723032.47
81 rdf:rest rdf:nil
82 Nb6f233a174354176858da6c04151d8b9 rdf:first sg:person.01030353264.99
83 rdf:rest N84c7dd5463994540bc8fe8448a864c40
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
88 schema:name Other Physical Sciences
89 rdf:type schema:DefinedTerm
90 sg:journal.1285002 schema:issn 0722-3277
91 1431-584X
92 schema:name Zeitschrift für Physik B Condensed Matter
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.01030353264.99 schema:affiliation grid-institutes:grid.41156.37
96 schema:familyName Sheng
97 schema:givenName L.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030353264.99
99 rdf:type schema:Person
100 sg:person.011374710011.80 schema:affiliation grid-institutes:grid.194645.b
101 schema:familyName Wang
102 schema:givenName Z.D.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
104 rdf:type schema:Person
105 sg:person.01264300610.97 schema:affiliation grid-institutes:None
106 schema:familyName Xing
107 schema:givenName D.Y.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264300610.97
109 rdf:type schema:Person
110 sg:person.01335723032.47 schema:affiliation grid-institutes:grid.194645.b
111 schema:familyName Zhu
112 schema:givenName Jian-Xin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335723032.47
114 rdf:type schema:Person
115 grid-institutes:None schema:alternateName Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China
116 schema:name Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China
117 National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China
118 rdf:type schema:Organization
119 grid-institutes:grid.194645.b schema:alternateName Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong
120 schema:name Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong
121 National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China
122 rdf:type schema:Organization
123 grid-institutes:grid.41156.37 schema:alternateName National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China
124 schema:name National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...