A formal theory of the conductivity and application to the giant magnetoresistance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

L. Sheng, Z.D. Wang, D.Y. Xing, Jian-Xin Zhu

ABSTRACT

The transport in a system with inhomogeneous elastic scattering is described in terms of a probabilityconserved Boltzmann equation. We demonstrate that the spatially varied current density depends only on the voltage drop between the ends of the sample. This fact enables us to develop a formal and general theory for the conductivity without determining the actual electric field inside the sample. The theory is first applied to multilayer systems and shown to recover the previous theory. By including the spin-dependent interface scattering and bulk scattering, we employ our theory to account for the giant magnetoresistance (MR) in magnetic granular systems with both spherical and cylindrical granules. The results obtained reproduce the experimental dependence of the MR on annealing temperature. More... »

PAGES

469-475

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002570050149

DOI

http://dx.doi.org/10.1007/s002570050149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018147043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheng", 
        "givenName": "L.", 
        "id": "sg:person.01030353264.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030353264.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China", 
            "Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Z.D.", 
        "id": "sg:person.011374710011.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China", 
            "Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "D.Y.", 
        "id": "sg:person.01264300610.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264300610.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jian-Xin", 
        "id": "sg:person.01335723032.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335723032.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.353766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057970218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.8287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.8287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.12272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.12272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.3830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.3830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.3060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.3060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "The transport in a system with inhomogeneous elastic scattering is described in terms of a probabilityconserved Boltzmann equation. We demonstrate that the spatially varied current density depends only on the voltage drop between the ends of the sample. This fact enables us to develop a formal and general theory for the conductivity without determining the actual electric field inside the sample. The theory is first applied to multilayer systems and shown to recover the previous theory. By including the spin-dependent interface scattering and bulk scattering, we employ our theory to account for the giant magnetoresistance (MR) in magnetic granular systems with both spherical and cylindrical granules. The results obtained reproduce the experimental dependence of the MR on annealing temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002570050149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "name": "A formal theory of the conductivity and application to the giant magnetoresistance", 
    "pagination": "469-475", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5676df3b95ae7bb9a07971ccf8edb87a4c2f2ba61058a8a98910586879e912dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002570050149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018147043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002570050149", 
      "https://app.dimensions.ai/details/publication/pub.1018147043"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002570050149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050149'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002570050149 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Naae198629fb5492f88882f734a16ffdf
4 schema:citation https://doi.org/10.1063/1.353766
5 https://doi.org/10.1103/physrevb.39.4828
6 https://doi.org/10.1103/physrevb.46.8287
7 https://doi.org/10.1103/physrevb.47.12272
8 https://doi.org/10.1103/physrevb.48.7099
9 https://doi.org/10.1103/physrevb.50.1001
10 https://doi.org/10.1103/physrevb.50.3830
11 https://doi.org/10.1103/physrevlett.61.2472
12 https://doi.org/10.1103/physrevlett.63.664
13 https://doi.org/10.1103/physrevlett.64.2304
14 https://doi.org/10.1103/physrevlett.65.1643
15 https://doi.org/10.1103/physrevlett.66.3060
16 https://doi.org/10.1103/physrevlett.68.3745
17 https://doi.org/10.1103/physrevlett.68.3749
18 https://doi.org/10.1103/physrevlett.69.2835
19 schema:datePublished 1997-12
20 schema:datePublishedReg 1997-12-01
21 schema:description The transport in a system with inhomogeneous elastic scattering is described in terms of a probabilityconserved Boltzmann equation. We demonstrate that the spatially varied current density depends only on the voltage drop between the ends of the sample. This fact enables us to develop a formal and general theory for the conductivity without determining the actual electric field inside the sample. The theory is first applied to multilayer systems and shown to recover the previous theory. By including the spin-dependent interface scattering and bulk scattering, we employ our theory to account for the giant magnetoresistance (MR) in magnetic granular systems with both spherical and cylindrical granules. The results obtained reproduce the experimental dependence of the MR on annealing temperature.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N1ae4ad14414849d5984485b4597df1c1
26 N34104a9b89ff4fdaa3b5a5a11dfff33b
27 sg:journal.1285002
28 schema:name A formal theory of the conductivity and application to the giant magnetoresistance
29 schema:pagination 469-475
30 schema:productId N85e53060805442a6838b34c4a5f3dfe7
31 Nc4116c0315e342c5984458636fd3c27e
32 Ne35ad37821ed44259f6bd937b7658805
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018147043
34 https://doi.org/10.1007/s002570050149
35 schema:sdDatePublished 2019-04-10T15:01
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nc942e49084ca4ac18b60fe123818a9b9
38 schema:url http://link.springer.com/10.1007%2Fs002570050149
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0bf7f17bdcae4a59bb8a142b8e9e5d49 rdf:first sg:person.011374710011.80
43 rdf:rest N9dc2d1376a8b41d39faa41c57bd70d2d
44 N100901b59b774bbbbe5d4b1e6985c919 rdf:first sg:person.01335723032.47
45 rdf:rest rdf:nil
46 N1ae4ad14414849d5984485b4597df1c1 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N34104a9b89ff4fdaa3b5a5a11dfff33b schema:volumeNumber 100
49 rdf:type schema:PublicationVolume
50 N85e53060805442a6838b34c4a5f3dfe7 schema:name dimensions_id
51 schema:value pub.1018147043
52 rdf:type schema:PropertyValue
53 N9dc2d1376a8b41d39faa41c57bd70d2d rdf:first sg:person.01264300610.97
54 rdf:rest N100901b59b774bbbbe5d4b1e6985c919
55 Naae198629fb5492f88882f734a16ffdf rdf:first sg:person.01030353264.99
56 rdf:rest N0bf7f17bdcae4a59bb8a142b8e9e5d49
57 Nc4116c0315e342c5984458636fd3c27e schema:name readcube_id
58 schema:value 5676df3b95ae7bb9a07971ccf8edb87a4c2f2ba61058a8a98910586879e912dd
59 rdf:type schema:PropertyValue
60 Nc942e49084ca4ac18b60fe123818a9b9 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Ne35ad37821ed44259f6bd937b7658805 schema:name doi
63 schema:value 10.1007/s002570050149
64 rdf:type schema:PropertyValue
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
69 schema:name Other Physical Sciences
70 rdf:type schema:DefinedTerm
71 sg:journal.1285002 schema:issn 0722-3277
72 1431-584X
73 schema:name Zeitschrift für Physik B Condensed Matter
74 rdf:type schema:Periodical
75 sg:person.01030353264.99 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
76 schema:familyName Sheng
77 schema:givenName L.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030353264.99
79 rdf:type schema:Person
80 sg:person.011374710011.80 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
81 schema:familyName Wang
82 schema:givenName Z.D.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
84 rdf:type schema:Person
85 sg:person.01264300610.97 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
86 schema:familyName Xing
87 schema:givenName D.Y.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264300610.97
89 rdf:type schema:Person
90 sg:person.01335723032.47 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
91 schema:familyName Zhu
92 schema:givenName Jian-Xin
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335723032.47
94 rdf:type schema:Person
95 https://doi.org/10.1063/1.353766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057970218
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevb.39.4828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036933778
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.46.8287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564389
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevb.47.12272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565016
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevb.48.7099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568994
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.50.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572329
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.50.3830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573794
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.63.664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800005
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.64.2304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800534
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.65.1643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801235
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.66.3060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802653
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.68.3745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804843
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.68.3749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804844
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.69.2835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805625
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
126 schema:name Department of Physics, the University of Hong Kong, Pokflam Road, Hong Kong
127 National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
130 schema:name Chinese Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China
131 National Laboratory of Solid State Microstructure, Institute of Solid State Physics, Nanjing University, Nanjing, People's Republic of China
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...