Quantum currents in mesoscopic Josephson junctions in the presence of non-classical microwaves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

A. Vourdas

ABSTRACT

Superconducting rings with mesoscopic Josephson junctions are considered in the presence of a do voltage bias Vo and of non-classical electromagnetic fields (coherent states, squeezed states, number eigenstates etc.). Due to the quantum nature of these devices the current I is a quantum mechanical operator and therefore «I2» is in general different from «I»2. Using «I2» we define the rms current Irms, and using the various harmonics of «I» as if they belong to a classical current we define the “classical rms current” Irms, class. In the case of classical currents these two quantities are identical, but for quantum currents they are different. We study their difference for various non-classical fields, and find that in some cases this difference is large. These predictions could be observed experimentally through the electromagnetic power that these currents radiate. An experiment that confirms the Irms and refutes the Irms, class would prove the quantum nature of these currents. More... »

PAGES

455-460

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002570050147

DOI

http://dx.doi.org/10.1007/s002570050147

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016365044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Liverpool", 
          "id": "https://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O. Box 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vourdas", 
        "givenName": "A.", 
        "id": "sg:person.012726447121.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01307636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003140918", 
          "https://doi.org/10.1007/bf01307636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003140918", 
          "https://doi.org/10.1007/bf01307636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500348714550721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003559373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(09)80058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049528729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00683687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049971074", 
          "https://doi.org/10.1007/bf00683687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00683687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049971074", 
          "https://doi.org/10.1007/bf00683687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1709777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057778599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1754595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057815040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/20/12/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059068773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0954-8998/1/2/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059116141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.3466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.34.3466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060475145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.3890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.37.3890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060477487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.2519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.2519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.2.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.2.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.6497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.6497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.3548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.3548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.7400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.7400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.6220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.6220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.13089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.13089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.13717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.13717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.15982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.15982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.12040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.12040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.11.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.7.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.7.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1966.4776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061438267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/32/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/352760278x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698706"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "Superconducting rings with mesoscopic Josephson junctions are considered in the presence of a do voltage bias Vo and of non-classical electromagnetic fields (coherent states, squeezed states, number eigenstates etc.). Due to the quantum nature of these devices the current I is a quantum mechanical operator and therefore \u00abI2\u00bb is in general different from \u00abI\u00bb2. Using \u00abI2\u00bb we define the rms current Irms, and using the various harmonics of \u00abI\u00bb as if they belong to a classical current we define the \u201cclassical rms current\u201d Irms, class. In the case of classical currents these two quantities are identical, but for quantum currents they are different. We study their difference for various non-classical fields, and find that in some cases this difference is large. These predictions could be observed experimentally through the electromagnetic power that these currents radiate. An experiment that confirms the Irms and refutes the Irms, class would prove the quantum nature of these currents.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002570050147", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "name": "Quantum currents in mesoscopic Josephson junctions in the presence of non-classical microwaves", 
    "pagination": "455-460", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4df97904d8857d13735ad4e5b0e99af223b8019be80f8f9db6e2f5c67a4f9e98"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002570050147"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016365044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002570050147", 
      "https://app.dimensions.ai/details/publication/pub.1016365044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002570050147"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050147'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050147'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050147'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050147'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002570050147 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8b4616c5f19b4ab39aa160871836a5a6
4 schema:citation sg:pub.10.1007/bf00683687
5 sg:pub.10.1007/bf01307636
6 https://doi.org/10.1002/352760278x
7 https://doi.org/10.1016/s0921-4526(09)80058-6
8 https://doi.org/10.1063/1.1709777
9 https://doi.org/10.1063/1.1754595
10 https://doi.org/10.1080/09500348714550721
11 https://doi.org/10.1088/0305-4470/20/12/025
12 https://doi.org/10.1088/0954-8998/1/2/006
13 https://doi.org/10.1103/physreva.34.3466
14 https://doi.org/10.1103/physreva.36.5866
15 https://doi.org/10.1103/physreva.37.3890
16 https://doi.org/10.1103/physreva.39.206
17 https://doi.org/10.1103/physreva.39.2519
18 https://doi.org/10.1103/physrevb.2.109
19 https://doi.org/10.1103/physrevb.33.6497
20 https://doi.org/10.1103/physrevb.36.3548
21 https://doi.org/10.1103/physrevb.37.7400
22 https://doi.org/10.1103/physrevb.43.6220
23 https://doi.org/10.1103/physrevb.44.13089
24 https://doi.org/10.1103/physrevb.45.13717
25 https://doi.org/10.1103/physrevb.46.15982
26 https://doi.org/10.1103/physrevb.49.12040
27 https://doi.org/10.1103/physrevlett.11.80
28 https://doi.org/10.1103/physrevlett.60.764
29 https://doi.org/10.1103/physrevlett.64.1824
30 https://doi.org/10.1103/physrevlett.7.46
31 https://doi.org/10.1109/proc.1966.4776
32 https://doi.org/10.1209/0295-5075/32/4/001
33 schema:datePublished 1997-12
34 schema:datePublishedReg 1997-12-01
35 schema:description Superconducting rings with mesoscopic Josephson junctions are considered in the presence of a do voltage bias Vo and of non-classical electromagnetic fields (coherent states, squeezed states, number eigenstates etc.). Due to the quantum nature of these devices the current I is a quantum mechanical operator and therefore «I2» is in general different from «I»2. Using «I2» we define the rms current Irms, and using the various harmonics of «I» as if they belong to a classical current we define the “classical rms current” Irms, class. In the case of classical currents these two quantities are identical, but for quantum currents they are different. We study their difference for various non-classical fields, and find that in some cases this difference is large. These predictions could be observed experimentally through the electromagnetic power that these currents radiate. An experiment that confirms the Irms and refutes the Irms, class would prove the quantum nature of these currents.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N60b35ec3647e4fdfac77213422890f33
40 N91346d2b649e40419d577b6ecf2f88c6
41 sg:journal.1285002
42 schema:name Quantum currents in mesoscopic Josephson junctions in the presence of non-classical microwaves
43 schema:pagination 455-460
44 schema:productId N0f369093738b40d3935c0d4228bc1097
45 N2c4926e3190849a4acbb40654b5829f3
46 Nca8e35c06c8b4560b887eb1f2432d5bb
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016365044
48 https://doi.org/10.1007/s002570050147
49 schema:sdDatePublished 2019-04-10T23:36
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N30b604875abb41f6b17aeab2708df0ba
52 schema:url http://link.springer.com/10.1007%2Fs002570050147
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0f369093738b40d3935c0d4228bc1097 schema:name dimensions_id
57 schema:value pub.1016365044
58 rdf:type schema:PropertyValue
59 N2c4926e3190849a4acbb40654b5829f3 schema:name readcube_id
60 schema:value 4df97904d8857d13735ad4e5b0e99af223b8019be80f8f9db6e2f5c67a4f9e98
61 rdf:type schema:PropertyValue
62 N30b604875abb41f6b17aeab2708df0ba schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N60b35ec3647e4fdfac77213422890f33 schema:volumeNumber 100
65 rdf:type schema:PublicationVolume
66 N8b4616c5f19b4ab39aa160871836a5a6 rdf:first sg:person.012726447121.07
67 rdf:rest rdf:nil
68 N91346d2b649e40419d577b6ecf2f88c6 schema:issueNumber 3
69 rdf:type schema:PublicationIssue
70 Nca8e35c06c8b4560b887eb1f2432d5bb schema:name doi
71 schema:value 10.1007/s002570050147
72 rdf:type schema:PropertyValue
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
77 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
78 rdf:type schema:DefinedTerm
79 sg:journal.1285002 schema:issn 0722-3277
80 1431-584X
81 schema:name Zeitschrift für Physik B Condensed Matter
82 rdf:type schema:Periodical
83 sg:person.012726447121.07 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
84 schema:familyName Vourdas
85 schema:givenName A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07
87 rdf:type schema:Person
88 sg:pub.10.1007/bf00683687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049971074
89 https://doi.org/10.1007/bf00683687
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01307636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003140918
92 https://doi.org/10.1007/bf01307636
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/352760278x schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698706
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0921-4526(09)80058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049528729
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1709777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057778599
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1754595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057815040
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/09500348714550721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003559373
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0305-4470/20/12/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068773
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1088/0954-8998/1/2/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059116141
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreva.34.3466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475145
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physreva.36.5866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476965
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreva.37.3890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477487
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreva.39.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478730
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreva.39.2519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478796
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.2.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525592
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.33.6497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540085
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.36.3548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060543723
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.37.7400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060546038
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.43.6220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557842
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.44.13089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060558896
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.45.13717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560952
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.46.15982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563328
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.49.12040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569701
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.11.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760995
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.60.764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797383
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.64.1824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800379
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.7.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806265
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/proc.1966.4776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061438267
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1209/0295-5075/32/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230713
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.10025.36 schema:alternateName University of Liverpool
149 schema:name Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O. Box 147, L69 3BX, Liverpool, UK
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...