On the applicability of mode coupling theory to a ϕ4-model with first order phase transition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

E.R. Duering, R. Schilling, H.-P. Wittmann

ABSTRACT

A ϕ4-model with symmetric double-well-like on-site potential and anharmonic, infinite range interactions is investigated. This model exhibits a first order phase transition at a temperature Tc. The time-dependent displacement correlation function is studied in the framework of the mode coupling theory (MCT). Depending on the choice of slow modes, MCT makes qualitatively different predictions which are compared with MD-results. These numerical results suggest that only the order parameter mode {ie1-1} should be considered as slow. In that case it is shown that MCT yields a dynamical transition in the supercooled high-temperature phase {ie1-2} at a temperature T* which coincides with the spinodal temperature Ts (Ts = 0 for our model) where the metastable supercooled phase becomes instable. More... »

PAGES

409-415

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002570050140

DOI

http://dx.doi.org/10.1007/s002570050140

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038306014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, D-55099, Mainz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, D-55099, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duering", 
        "givenName": "E.R.", 
        "id": "sg:person.011243745545.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011243745545.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, D-55099, Mainz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, D-55099, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schilling", 
        "givenName": "R.", 
        "id": "sg:person.01114326326.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114326326.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, D-55099, Mainz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5802.f", 
          "name": [
            "Institut f\u00fcr Physik, Johannes-Gutenberg-Universit\u00e4t Mainz, Staudinger Weg 7, D-55099, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wittmann", 
        "givenName": "H.-P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01307297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008195672", 
          "https://doi.org/10.1007/bf01307297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01357188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044136897", 
          "https://doi.org/10.1007/bf01357188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01312496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037358651", 
          "https://doi.org/10.1007/bf01312496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01304237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027345157", 
          "https://doi.org/10.1007/bf01304237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96971-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034461437", 
          "https://doi.org/10.1007/978-3-642-96971-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01309169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048643965", 
          "https://doi.org/10.1007/bf01309169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0044591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085163882", 
          "https://doi.org/10.1007/bfb0044591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01387793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026756144", 
          "https://doi.org/10.1007/bf01387793"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "A \u03d54-model with symmetric double-well-like on-site potential and anharmonic, infinite range interactions is investigated. This model exhibits a first order phase transition at a temperature Tc. The time-dependent displacement correlation function is studied in the framework of the mode coupling theory (MCT). Depending on the choice of slow modes, MCT makes qualitatively different predictions which are compared with MD-results. These numerical results suggest that only the order parameter mode {ie1-1} should be considered as slow. In that case it is shown that MCT yields a dynamical transition in the supercooled high-temperature phase {ie1-2} at a temperature T* which coincides with the spinodal temperature Ts (Ts = 0 for our model) where the metastable supercooled phase becomes instable.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002570050140", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "keywords": [
      "mode coupling theory", 
      "first-order phase transition", 
      "order phase transition", 
      "infinite-range interactions", 
      "order-parameter modes", 
      "phase transition", 
      "displacement correlation function", 
      "\u03d54 model", 
      "dynamical transition", 
      "temperature Tc", 
      "correlation functions", 
      "ie1-1", 
      "parameter mode", 
      "site potential", 
      "numerical results", 
      "coupling theory", 
      "slow mode", 
      "range interactions", 
      "high-temperature phase", 
      "temperature T", 
      "theory", 
      "spinodal temperature", 
      "different predictions", 
      "anharmonic", 
      "transition", 
      "Tc", 
      "mode", 
      "MD results", 
      "applicability", 
      "model", 
      "prediction", 
      "framework", 
      "function", 
      "phase", 
      "metastable", 
      "cases", 
      "temperature", 
      "choice", 
      "results", 
      "interaction", 
      "potential"
    ], 
    "name": "On the applicability of mode coupling theory to a \u03d54-model with first order phase transition", 
    "pagination": "409-415", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038306014"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002570050140"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002570050140", 
      "https://app.dimensions.ai/details/publication/pub.1038306014"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_296.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002570050140"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050140'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050140'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050140'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050140'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      22 PREDICATES      75 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002570050140 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd31bba16c1b5400ea19b83de2f3ead79
4 schema:citation sg:pub.10.1007/978-3-642-96971-3
5 sg:pub.10.1007/bf01304237
6 sg:pub.10.1007/bf01307297
7 sg:pub.10.1007/bf01309169
8 sg:pub.10.1007/bf01312496
9 sg:pub.10.1007/bf01357188
10 sg:pub.10.1007/bf01387793
11 sg:pub.10.1007/bfb0044591
12 schema:datePublished 1997-12
13 schema:datePublishedReg 1997-12-01
14 schema:description A ϕ4-model with symmetric double-well-like on-site potential and anharmonic, infinite range interactions is investigated. This model exhibits a first order phase transition at a temperature Tc. The time-dependent displacement correlation function is studied in the framework of the mode coupling theory (MCT). Depending on the choice of slow modes, MCT makes qualitatively different predictions which are compared with MD-results. These numerical results suggest that only the order parameter mode {ie1-1} should be considered as slow. In that case it is shown that MCT yields a dynamical transition in the supercooled high-temperature phase {ie1-2} at a temperature T* which coincides with the spinodal temperature Ts (Ts = 0 for our model) where the metastable supercooled phase becomes instable.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N1cf56b7ee0a44fc293245c336f44c7af
19 Necb25ee968a64335a94bfcb954dec346
20 sg:journal.1285002
21 schema:keywords MD results
22 Tc
23 anharmonic
24 applicability
25 cases
26 choice
27 correlation functions
28 coupling theory
29 different predictions
30 displacement correlation function
31 dynamical transition
32 first-order phase transition
33 framework
34 function
35 high-temperature phase
36 ie1-1
37 infinite-range interactions
38 interaction
39 metastable
40 mode
41 mode coupling theory
42 model
43 numerical results
44 order phase transition
45 order-parameter modes
46 parameter mode
47 phase
48 phase transition
49 potential
50 prediction
51 range interactions
52 results
53 site potential
54 slow mode
55 spinodal temperature
56 temperature
57 temperature T
58 temperature Tc
59 theory
60 transition
61 ϕ4 model
62 schema:name On the applicability of mode coupling theory to a ϕ4-model with first order phase transition
63 schema:pagination 409-415
64 schema:productId N65ba51add52448e29e6f42e79f824cbf
65 N90ed7c6ba13740e79f928d87ade13277
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038306014
67 https://doi.org/10.1007/s002570050140
68 schema:sdDatePublished 2022-06-01T22:00
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nbc85f18999f640adb9a1a4cb51d9dbf2
71 schema:url https://doi.org/10.1007/s002570050140
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N1cf56b7ee0a44fc293245c336f44c7af schema:volumeNumber 100
76 rdf:type schema:PublicationVolume
77 N37ad7e6410124e8e84cfc71c6a4a530a rdf:first sg:person.01114326326.84
78 rdf:rest N73e5cb17d50d475e9eb1542870973c91
79 N65ba51add52448e29e6f42e79f824cbf schema:name dimensions_id
80 schema:value pub.1038306014
81 rdf:type schema:PropertyValue
82 N73e5cb17d50d475e9eb1542870973c91 rdf:first N9d6db44c7ccf44569eb6f91c560273ec
83 rdf:rest rdf:nil
84 N90ed7c6ba13740e79f928d87ade13277 schema:name doi
85 schema:value 10.1007/s002570050140
86 rdf:type schema:PropertyValue
87 N9d6db44c7ccf44569eb6f91c560273ec schema:affiliation grid-institutes:grid.5802.f
88 schema:familyName Wittmann
89 schema:givenName H.-P.
90 rdf:type schema:Person
91 Nbc85f18999f640adb9a1a4cb51d9dbf2 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nd31bba16c1b5400ea19b83de2f3ead79 rdf:first sg:person.011243745545.50
94 rdf:rest N37ad7e6410124e8e84cfc71c6a4a530a
95 Necb25ee968a64335a94bfcb954dec346 schema:issueNumber 3
96 rdf:type schema:PublicationIssue
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1285002 schema:issn 0722-3277
104 1431-584X
105 schema:name Zeitschrift für Physik B Condensed Matter
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.01114326326.84 schema:affiliation grid-institutes:grid.5802.f
109 schema:familyName Schilling
110 schema:givenName R.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114326326.84
112 rdf:type schema:Person
113 sg:person.011243745545.50 schema:affiliation grid-institutes:grid.5802.f
114 schema:familyName Duering
115 schema:givenName E.R.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011243745545.50
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-642-96971-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034461437
119 https://doi.org/10.1007/978-3-642-96971-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01304237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027345157
122 https://doi.org/10.1007/bf01304237
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01307297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008195672
125 https://doi.org/10.1007/bf01307297
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf01309169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048643965
128 https://doi.org/10.1007/bf01309169
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf01312496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037358651
131 https://doi.org/10.1007/bf01312496
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf01357188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044136897
134 https://doi.org/10.1007/bf01357188
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf01387793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026756144
137 https://doi.org/10.1007/bf01387793
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bfb0044591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085163882
140 https://doi.org/10.1007/bfb0044591
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.5802.f schema:alternateName Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099, Mainz, Germany
143 schema:name Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099, Mainz, Germany
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...