Classification of unconventional electron-hole condensates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-12

AUTHORS

P. Thalmeier

ABSTRACT

Heavy Fermion metals with their very anisotropic quasiparticle states may support unconventional electron-hole (Peierls) pairing in addition to unconventional two electron (Cooper) pairs in the superconducting phase. For two different nesting Fermi surface models the possible types of electron hole condensates are classified according to the symmetries of their order parameters. This is performed within a continuum representation for the electronic states near the van Hove saddle point singularities. The quasiparticle bands and the unitary transformation to Bloch states in the condensed phase are derived for the two Fermi surface models with one and two independent nesting vectors respectively. Emphasis is put on the investigation of electron-hole condensed phases with 2Q-modulated structure. It is shown that in the continuum approximation the gap equations are all equivalent and the critical field curve is calculated in the rigid band model. More... »

PAGES

387-394

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002570050137

DOI

http://dx.doi.org/10.1007/s002570050137

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025490976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "P.", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00754941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016581241", 
          "https://doi.org/10.1007/bf00754941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00754941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016581241", 
          "https://doi.org/10.1007/bf00754941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0081-1947(08)60378-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023025511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018739200101503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024164371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018739200101503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024164371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/3/19/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024417793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)91746-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030637465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)91746-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030637465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01316841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034015083", 
          "https://doi.org/10.1007/bf01316841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01316841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034015083", 
          "https://doi.org/10.1007/bf01316841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00681537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041344146", 
          "https://doi.org/10.1007/bf00681537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00681537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041344146", 
          "https://doi.org/10.1007/bf00681537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018737900101375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043764320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018737900101375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043764320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808638"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-12", 
    "datePublishedReg": "1997-12-01", 
    "description": "Heavy Fermion metals with their very anisotropic quasiparticle states may support unconventional electron-hole (Peierls) pairing in addition to unconventional two electron (Cooper) pairs in the superconducting phase. For two different nesting Fermi surface models the possible types of electron hole condensates are classified according to the symmetries of their order parameters. This is performed within a continuum representation for the electronic states near the van Hove saddle point singularities. The quasiparticle bands and the unitary transformation to Bloch states in the condensed phase are derived for the two Fermi surface models with one and two independent nesting vectors respectively. Emphasis is put on the investigation of electron-hole condensed phases with 2Q-modulated structure. It is shown that in the continuum approximation the gap equations are all equivalent and the critical field curve is calculated in the rigid band model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002570050137", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "name": "Classification of unconventional electron-hole condensates", 
    "pagination": "387-394", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7970d65348a67f5ffb1d88e34218947ccc9c3c1838460f4f59567e537f9fb1e1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002570050137"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025490976"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002570050137", 
      "https://app.dimensions.ai/details/publication/pub.1025490976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002570050137"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002570050137'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002570050137'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002570050137'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002570050137'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002570050137 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N529aa1f6972d479496c58f7531518507
4 schema:citation sg:pub.10.1007/bf00681537
5 sg:pub.10.1007/bf00754941
6 sg:pub.10.1007/bf01316841
7 https://doi.org/10.1016/0921-4526(94)91746-9
8 https://doi.org/10.1016/s0081-1947(08)60378-1
9 https://doi.org/10.1080/00018737900101375
10 https://doi.org/10.1080/00018739200101503
11 https://doi.org/10.1088/0953-8984/3/19/014
12 https://doi.org/10.1103/physrevb.39.2940
13 https://doi.org/10.1103/physrevlett.69.2586
14 https://doi.org/10.1103/physrevlett.72.1754
15 schema:datePublished 1997-12
16 schema:datePublishedReg 1997-12-01
17 schema:description Heavy Fermion metals with their very anisotropic quasiparticle states may support unconventional electron-hole (Peierls) pairing in addition to unconventional two electron (Cooper) pairs in the superconducting phase. For two different nesting Fermi surface models the possible types of electron hole condensates are classified according to the symmetries of their order parameters. This is performed within a continuum representation for the electronic states near the van Hove saddle point singularities. The quasiparticle bands and the unitary transformation to Bloch states in the condensed phase are derived for the two Fermi surface models with one and two independent nesting vectors respectively. Emphasis is put on the investigation of electron-hole condensed phases with 2Q-modulated structure. It is shown that in the continuum approximation the gap equations are all equivalent and the critical field curve is calculated in the rigid band model.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N3e7c01e10aed4420b664c898d4a7c67a
22 N914e65b54c604c22b314f97928d710e2
23 sg:journal.1285002
24 schema:name Classification of unconventional electron-hole condensates
25 schema:pagination 387-394
26 schema:productId N148f7d6139a44577a4dc1dbb700b01a3
27 N9d010c99feae40c6b27efcc2f24fa1be
28 Ne6afbc5d2957418383a99fe8e24c186c
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025490976
30 https://doi.org/10.1007/s002570050137
31 schema:sdDatePublished 2019-04-10T20:47
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N4a423ae87e4c4942b2438ba15148fa0c
34 schema:url http://link.springer.com/10.1007%2Fs002570050137
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N148f7d6139a44577a4dc1dbb700b01a3 schema:name readcube_id
39 schema:value 7970d65348a67f5ffb1d88e34218947ccc9c3c1838460f4f59567e537f9fb1e1
40 rdf:type schema:PropertyValue
41 N3e7c01e10aed4420b664c898d4a7c67a schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 N4a423ae87e4c4942b2438ba15148fa0c schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N529aa1f6972d479496c58f7531518507 rdf:first sg:person.015501240375.83
46 rdf:rest rdf:nil
47 N914e65b54c604c22b314f97928d710e2 schema:volumeNumber 100
48 rdf:type schema:PublicationVolume
49 N9d010c99feae40c6b27efcc2f24fa1be schema:name dimensions_id
50 schema:value pub.1025490976
51 rdf:type schema:PropertyValue
52 Ne6afbc5d2957418383a99fe8e24c186c schema:name doi
53 schema:value 10.1007/s002570050137
54 rdf:type schema:PropertyValue
55 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
56 schema:name Engineering
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
59 schema:name Materials Engineering
60 rdf:type schema:DefinedTerm
61 sg:journal.1285002 schema:issn 0722-3277
62 1431-584X
63 schema:name Zeitschrift für Physik B Condensed Matter
64 rdf:type schema:Periodical
65 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
66 schema:familyName Thalmeier
67 schema:givenName P.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
69 rdf:type schema:Person
70 sg:pub.10.1007/bf00681537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041344146
71 https://doi.org/10.1007/bf00681537
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf00754941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016581241
74 https://doi.org/10.1007/bf00754941
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01316841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034015083
77 https://doi.org/10.1007/bf01316841
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0921-4526(94)91746-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030637465
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0081-1947(08)60378-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023025511
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1080/00018737900101375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043764320
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1080/00018739200101503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024164371
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1088/0953-8984/3/19/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417793
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrevb.39.2940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549270
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevlett.69.2586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805554
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevlett.72.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808638
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
96 schema:name Max-Planck-Institut für Physik komplexer Systeme, D-01187, Dresden, Germany
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...