Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

Pooya Torkian, Bahar Mansoori, Jens Hillengass, Javid Azadbakht, Sina Rashedi, Sarah S. Lee, Behrang Amini, Pietro Andrea Bonaffini, Majid Chalian

ABSTRACT

ObjectiveTo evaluate the role of diffusion-weighted imaging (DWI) in the initial diagnosis, staging, and assessment of treatment response in patients with multiple myeloma (MM).Materials and methodsA systematic literature review was conducted in PubMed, the Cochrane Library, EMBASE, Scopus, and Web of Science databases. The primary endpoints were defined as the diagnostic performance of DWI for disease detection, staging of MM, and assessing response to treatment in these patients.ResultsOf 5881 initially reviewed publications, 33 were included in the final qualitative and quantitative meta-analysis. The diagnostic performance of DWI in the detection of patients with MM revealed pooled sensitivity and specificity of 86% (95% CI: 84–89) and 63% (95% CI: 56–70), respectively, with a diagnostic odds ratio (OR) of 14.98 (95% CI: 4.24–52.91). The pooled risk difference of 0.19 (95% CI: − 0.04–0.42) was reported in favor of upstaging with DWI compared to conventional MRI (P value = 0.1). Treatment response evaluation and ADCmean value changes across different studies showed sensitivity and specificity of approximately 78% (95% CI: 72–83) and 73% (95% CI: 61–83), respectively, with a diagnostic OR of 7.21 in distinguishing responders from non-responders.ConclusionsDWI is not only a promising tool for the diagnosis of MM, but it is also useful in the initial staging and re-staging of the disease and treatment response assessment. This can aid clinicians with earlier initiation or change in treatment strategy, which could have prognostic significance for patients. More... »

PAGES

1-19

References to SciGraph publications

  • 2017-11-13. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI in EUROPEAN RADIOLOGY
  • 2015-12-09. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? in LEUKEMIA
  • 2017-06-27. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction in EUROPEAN RADIOLOGY
  • 2003-08-01. Survival and Proliferation Factors of Normal and Malignant Plasma Cells in INTERNATIONAL JOURNAL OF HEMATOLOGY
  • 2006-07-20. International uniform response criteria for multiple myeloma in LEUKEMIA
  • 2013-03-01. MRI for response assessment in metastatic bone disease in EUROPEAN RADIOLOGY
  • 2021-08-07. Imaging of treatment response and minimal residual disease in multiple myeloma: state of the art WB-MRI and PET/CT in SKELETAL RADIOLOGY
  • 2010-04-22. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management in LEUKEMIA
  • 2010-09-19. Signal characteristics of focal bone marrow lesions in patients with multiple myeloma using whole body T1w-TSE, T2w-STIR and diffusion-weighted imaging with background suppression in EUROPEAN RADIOLOGY
  • 2006-02-04. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey in EUROPEAN RADIOLOGY
  • 2013-05-17. Intravoxel incoherent motion imaging for assessment of bone marrow infiltration of monoclonal plasma cell diseases in ANNALS OF HEMATOLOGY
  • 2018-11-14. Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses in LA RADIOLOGIA MEDICA
  • 2020-01-30. Role of whole-body MRI for treatment response assessment in multiple myeloma: comparison between clinical response and imaging response in CANCER IMAGING
  • 2011-04-07. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility in EUROPEAN RADIOLOGY
  • 2009-07-27. CR represents an early index of potential long survival in multiple myeloma in BONE MARROW TRANSPLANTATION
  • 2014-08-09. The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma in EUROPEAN RADIOLOGY
  • 2014-10-09. Characterization of multiple myeloma osseous lesions and diffuse infiltration pattern by 18F-FDG-PET/CT, static MRI and diffusion-weighted MR Imaging (DWI-MRI): a comparative multimodality imaging study in CANCER IMAGING
  • 2001-10. Relationship between bone marrow angiogenesis and plasma cell infiltration and serum β2-microglobulin levels in patients with multiple myeloma in ANNALS OF HEMATOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00256-022-04119-0

    DOI

    http://dx.doi.org/10.1007/s00256-022-04119-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149764795

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35881152


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torkian", 
            "givenName": "Pooya", 
            "id": "sg:person.011153104044.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153104044.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Division Abdominal Imaging, University of Washington, 98105, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Radiology, Division Abdominal Imaging, University of Washington, 98105, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mansoori", 
            "givenName": "Bahar", 
            "id": "sg:person.01204364000.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204364000.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.240614.5", 
              "name": [
                "Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hillengass", 
            "givenName": "Jens", 
            "id": "sg:person.01007410143.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007410143.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411705.6", 
              "name": [
                "Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azadbakht", 
            "givenName": "Javid", 
            "id": "sg:person.013416651257.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416651257.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.411705.6", 
              "name": [
                "Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rashedi", 
            "givenName": "Sina", 
            "id": "sg:person.011054450217.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054450217.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Oncology, University of Washington, 98105, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Oncology, University of Washington, 98105, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Sarah S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.240145.6", 
              "name": [
                "Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amini", 
            "givenName": "Behrang", 
            "id": "sg:person.01222627716.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222627716.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Milano Bicocca, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Department of Radiology, Papa Giovanni XXIII Hospital, Bergamo, Italy", 
                "University Milano Bicocca, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonaffini", 
            "givenName": "Pietro Andrea", 
            "id": "sg:person.01371423536.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371423536.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Division Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, 98105, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Radiology, Division Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, 98105, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chalian", 
            "givenName": "Majid", 
            "id": "sg:person.01346327771.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346327771.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00277-013-1786-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018895058", 
              "https://doi.org/10.1007/s00277-013-1786-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4907-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090275851", 
              "https://doi.org/10.1007/s00330-017-4907-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11547-018-0955-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109903218", 
              "https://doi.org/10.1007/s11547-018-0955-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1470-7330-14-s1-p33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083684048", 
              "https://doi.org/10.1186/1470-7330-14-s1-p33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.leu.2404284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033553106", 
              "https://doi.org/10.1038/sj.leu.2404284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-005-0055-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035920967", 
              "https://doi.org/10.1007/s00330-005-0055-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3324-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033580225", 
              "https://doi.org/10.1007/s00330-014-3324-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-011-2116-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013192489", 
              "https://doi.org/10.1007/s00330-011-2116-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2010.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016254772", 
              "https://doi.org/10.1038/leu.2010.60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bmt.2009.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045290019", 
              "https://doi.org/10.1038/bmt.2009.176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-020-0293-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124454052", 
              "https://doi.org/10.1186/s40644-020-0293-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-5079-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092666374", 
              "https://doi.org/10.1007/s00330-017-5079-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02983377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049393389", 
              "https://doi.org/10.1007/bf02983377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002770100361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024347091", 
              "https://doi.org/10.1007/s002770100361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2015.338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017375408", 
              "https://doi.org/10.1038/leu.2015.338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-013-2792-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049854576", 
              "https://doi.org/10.1007/s00330-013-2792-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-010-1950-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030987801", 
              "https://doi.org/10.1007/s00330-010-1950-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00256-021-03841-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140270891", 
              "https://doi.org/10.1007/s00256-021-03841-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-26", 
        "datePublishedReg": "2022-07-26", 
        "description": "ObjectiveTo evaluate the role of diffusion-weighted imaging (DWI) in the initial diagnosis, staging, and assessment of treatment response in patients with multiple myeloma (MM).Materials and methodsA systematic literature review was conducted in PubMed, the Cochrane Library, EMBASE, Scopus, and Web of Science databases. The primary endpoints were defined as the diagnostic performance of DWI for disease detection, staging of MM, and assessing response to treatment in these patients.ResultsOf 5881 initially reviewed publications, 33 were included in the final qualitative and quantitative meta-analysis. The diagnostic performance of DWI in the detection of patients with MM revealed pooled sensitivity and specificity of 86% (95% CI: 84\u201389) and 63% (95% CI: 56\u201370), respectively, with a diagnostic odds ratio (OR) of 14.98 (95% CI: 4.24\u201352.91). The pooled risk difference of 0.19 (95% CI:\u2009\u2212\u20090.04\u20130.42) was reported in favor of upstaging with DWI compared to conventional MRI (P\u00a0value\u2009=\u20090.1). Treatment response evaluation and ADCmean value changes across different studies showed sensitivity and specificity of approximately 78% (95% CI: 72\u201383) and 73% (95% CI: 61\u201383), respectively, with a diagnostic OR of 7.21 in distinguishing responders from non-responders.ConclusionsDWI is not only a promising tool for the diagnosis of MM, but it is also useful in the initial staging and re-staging of the disease and treatment response assessment. This can aid clinicians with earlier initiation or change in treatment strategy, which could have prognostic significance for patients.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00256-022-04119-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1086201", 
            "issn": [
              "0364-2348", 
              "1432-2161"
            ], 
            "name": "Skeletal Radiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "diffusion-weighted imaging", 
          "multiple myeloma", 
          "treatment response assessment", 
          "odds ratio", 
          "response assessment", 
          "diagnosis of MM", 
          "MethodsA systematic literature review", 
          "diagnostic performance", 
          "staging of MM", 
          "pooled risk difference", 
          "treatment response evaluation", 
          "detection of patients", 
          "primary endpoint", 
          "initial staging", 
          "initial diagnosis", 
          "prognostic significance", 
          "Cochrane Library", 
          "diagnostic odds ratio", 
          "treatment strategies", 
          "treatment response", 
          "early initiation", 
          "risk difference", 
          "patients", 
          "conventional MRI", 
          "systematic review", 
          "staging", 
          "response evaluation", 
          "pooled sensitivity", 
          "final qualitative", 
          "diagnosis", 
          "ADCmean values", 
          "myeloma", 
          "Science databases", 
          "systematic literature review", 
          "different studies", 
          "literature review", 
          "imaging", 
          "upstaging", 
          "assessment", 
          "EMBASE", 
          "review", 
          "ObjectiveTo", 
          "disease detection", 
          "PubMed", 
          "specificity", 
          "clinicians", 
          "responders", 
          "disease", 
          "ConclusionsDWI", 
          "MRI", 
          "endpoint", 
          "response", 
          "Scopus", 
          "treatment", 
          "promising tool", 
          "sensitivity", 
          "initiation", 
          "differences", 
          "database", 
          "significance", 
          "evaluation", 
          "detection", 
          "study", 
          "role", 
          "changes", 
          "publications", 
          "favor", 
          "strategies", 
          "ratio", 
          "qualitative", 
          "Web", 
          "tool", 
          "values", 
          "library", 
          "materials", 
          "performance"
        ], 
        "name": "Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis", 
        "pagination": "1-19", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149764795"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00256-022-04119-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35881152"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00256-022-04119-0", 
          "https://app.dimensions.ai/details/publication/pub.1149764795"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_953.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00256-022-04119-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04119-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04119-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04119-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04119-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    280 TRIPLES      21 PREDICATES      117 URIs      91 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00256-022-04119-0 schema:about anzsrc-for:11
    2 anzsrc-for:1102
    3 schema:author N6edc8a7601334394ae8253d3e0c1060d
    4 schema:citation sg:pub.10.1007/bf02983377
    5 sg:pub.10.1007/s00256-021-03841-5
    6 sg:pub.10.1007/s00277-013-1786-1
    7 sg:pub.10.1007/s002770100361
    8 sg:pub.10.1007/s00330-005-0055-7
    9 sg:pub.10.1007/s00330-010-1950-0
    10 sg:pub.10.1007/s00330-011-2116-4
    11 sg:pub.10.1007/s00330-013-2792-3
    12 sg:pub.10.1007/s00330-014-3324-5
    13 sg:pub.10.1007/s00330-017-4907-8
    14 sg:pub.10.1007/s00330-017-5079-2
    15 sg:pub.10.1007/s11547-018-0955-7
    16 sg:pub.10.1038/bmt.2009.176
    17 sg:pub.10.1038/leu.2010.60
    18 sg:pub.10.1038/leu.2015.338
    19 sg:pub.10.1038/sj.leu.2404284
    20 sg:pub.10.1186/1470-7330-14-s1-p33
    21 sg:pub.10.1186/s40644-020-0293-6
    22 schema:datePublished 2022-07-26
    23 schema:datePublishedReg 2022-07-26
    24 schema:description ObjectiveTo evaluate the role of diffusion-weighted imaging (DWI) in the initial diagnosis, staging, and assessment of treatment response in patients with multiple myeloma (MM).Materials and methodsA systematic literature review was conducted in PubMed, the Cochrane Library, EMBASE, Scopus, and Web of Science databases. The primary endpoints were defined as the diagnostic performance of DWI for disease detection, staging of MM, and assessing response to treatment in these patients.ResultsOf 5881 initially reviewed publications, 33 were included in the final qualitative and quantitative meta-analysis. The diagnostic performance of DWI in the detection of patients with MM revealed pooled sensitivity and specificity of 86% (95% CI: 84–89) and 63% (95% CI: 56–70), respectively, with a diagnostic odds ratio (OR) of 14.98 (95% CI: 4.24–52.91). The pooled risk difference of 0.19 (95% CI: − 0.04–0.42) was reported in favor of upstaging with DWI compared to conventional MRI (P value = 0.1). Treatment response evaluation and ADCmean value changes across different studies showed sensitivity and specificity of approximately 78% (95% CI: 72–83) and 73% (95% CI: 61–83), respectively, with a diagnostic OR of 7.21 in distinguishing responders from non-responders.ConclusionsDWI is not only a promising tool for the diagnosis of MM, but it is also useful in the initial staging and re-staging of the disease and treatment response assessment. This can aid clinicians with earlier initiation or change in treatment strategy, which could have prognostic significance for patients.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf sg:journal.1086201
    28 schema:keywords ADCmean values
    29 Cochrane Library
    30 ConclusionsDWI
    31 EMBASE
    32 MRI
    33 MethodsA systematic literature review
    34 ObjectiveTo
    35 PubMed
    36 Science databases
    37 Scopus
    38 Web
    39 assessment
    40 changes
    41 clinicians
    42 conventional MRI
    43 database
    44 detection
    45 detection of patients
    46 diagnosis
    47 diagnosis of MM
    48 diagnostic odds ratio
    49 diagnostic performance
    50 differences
    51 different studies
    52 diffusion-weighted imaging
    53 disease
    54 disease detection
    55 early initiation
    56 endpoint
    57 evaluation
    58 favor
    59 final qualitative
    60 imaging
    61 initial diagnosis
    62 initial staging
    63 initiation
    64 library
    65 literature review
    66 materials
    67 multiple myeloma
    68 myeloma
    69 odds ratio
    70 patients
    71 performance
    72 pooled risk difference
    73 pooled sensitivity
    74 primary endpoint
    75 prognostic significance
    76 promising tool
    77 publications
    78 qualitative
    79 ratio
    80 responders
    81 response
    82 response assessment
    83 response evaluation
    84 review
    85 risk difference
    86 role
    87 sensitivity
    88 significance
    89 specificity
    90 staging
    91 staging of MM
    92 strategies
    93 study
    94 systematic literature review
    95 systematic review
    96 tool
    97 treatment
    98 treatment response
    99 treatment response assessment
    100 treatment response evaluation
    101 treatment strategies
    102 upstaging
    103 values
    104 schema:name Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis
    105 schema:pagination 1-19
    106 schema:productId N2536a5ab02434d00a0aef8512e8a050a
    107 N32dbf020125a4e01930e6f4d0964c0d2
    108 N9b5372b0ead946b9a1a7dc5e6095a753
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149764795
    110 https://doi.org/10.1007/s00256-022-04119-0
    111 schema:sdDatePublished 2022-10-01T06:50
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N4d75e0ffdb494a6b9f834d1b9c55dd06
    114 schema:url https://doi.org/10.1007/s00256-022-04119-0
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N21652a759a5f4c40a2bfc23dc0ae5399 rdf:first sg:person.01204364000.94
    119 rdf:rest Ncd55ed101b4d4690ac1a9889ec95d5bf
    120 N244fcf85056740a583d4f6088410d3d4 rdf:first sg:person.01371423536.00
    121 rdf:rest Nad8d3957f9e442719177ea299e2d9027
    122 N2536a5ab02434d00a0aef8512e8a050a schema:name doi
    123 schema:value 10.1007/s00256-022-04119-0
    124 rdf:type schema:PropertyValue
    125 N32dbf020125a4e01930e6f4d0964c0d2 schema:name dimensions_id
    126 schema:value pub.1149764795
    127 rdf:type schema:PropertyValue
    128 N4d75e0ffdb494a6b9f834d1b9c55dd06 schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N6d7377b269dc44a387abcb4ea956a073 rdf:first sg:person.01222627716.31
    131 rdf:rest N244fcf85056740a583d4f6088410d3d4
    132 N6edc8a7601334394ae8253d3e0c1060d rdf:first sg:person.011153104044.94
    133 rdf:rest N21652a759a5f4c40a2bfc23dc0ae5399
    134 N798a9ddc21ff4c31ab4a9115a462e41c schema:affiliation grid-institutes:grid.34477.33
    135 schema:familyName Lee
    136 schema:givenName Sarah S.
    137 rdf:type schema:Person
    138 N9b5372b0ead946b9a1a7dc5e6095a753 schema:name pubmed_id
    139 schema:value 35881152
    140 rdf:type schema:PropertyValue
    141 Naa5a2281146f42229203dc62d5a110ed rdf:first sg:person.013416651257.25
    142 rdf:rest Nc52a8eb104d54f2a935f4b5ea7a82def
    143 Nad8d3957f9e442719177ea299e2d9027 rdf:first sg:person.01346327771.82
    144 rdf:rest rdf:nil
    145 Nb37652476e8d406ebb439f6d1745e470 rdf:first N798a9ddc21ff4c31ab4a9115a462e41c
    146 rdf:rest N6d7377b269dc44a387abcb4ea956a073
    147 Nc52a8eb104d54f2a935f4b5ea7a82def rdf:first sg:person.011054450217.24
    148 rdf:rest Nb37652476e8d406ebb439f6d1745e470
    149 Ncd55ed101b4d4690ac1a9889ec95d5bf rdf:first sg:person.01007410143.45
    150 rdf:rest Naa5a2281146f42229203dc62d5a110ed
    151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Medical and Health Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Cardiorespiratory Medicine and Haematology
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1086201 schema:issn 0364-2348
    158 1432-2161
    159 schema:name Skeletal Radiology
    160 schema:publisher Springer Nature
    161 rdf:type schema:Periodical
    162 sg:person.01007410143.45 schema:affiliation grid-institutes:grid.240614.5
    163 schema:familyName Hillengass
    164 schema:givenName Jens
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007410143.45
    166 rdf:type schema:Person
    167 sg:person.011054450217.24 schema:affiliation grid-institutes:grid.411705.6
    168 schema:familyName Rashedi
    169 schema:givenName Sina
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011054450217.24
    171 rdf:type schema:Person
    172 sg:person.011153104044.94 schema:affiliation grid-institutes:grid.17635.36
    173 schema:familyName Torkian
    174 schema:givenName Pooya
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153104044.94
    176 rdf:type schema:Person
    177 sg:person.01204364000.94 schema:affiliation grid-institutes:grid.34477.33
    178 schema:familyName Mansoori
    179 schema:givenName Bahar
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204364000.94
    181 rdf:type schema:Person
    182 sg:person.01222627716.31 schema:affiliation grid-institutes:grid.240145.6
    183 schema:familyName Amini
    184 schema:givenName Behrang
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222627716.31
    186 rdf:type schema:Person
    187 sg:person.013416651257.25 schema:affiliation grid-institutes:grid.411705.6
    188 schema:familyName Azadbakht
    189 schema:givenName Javid
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013416651257.25
    191 rdf:type schema:Person
    192 sg:person.01346327771.82 schema:affiliation grid-institutes:grid.34477.33
    193 schema:familyName Chalian
    194 schema:givenName Majid
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346327771.82
    196 rdf:type schema:Person
    197 sg:person.01371423536.00 schema:affiliation grid-institutes:grid.7563.7
    198 schema:familyName Bonaffini
    199 schema:givenName Pietro Andrea
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371423536.00
    201 rdf:type schema:Person
    202 sg:pub.10.1007/bf02983377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049393389
    203 https://doi.org/10.1007/bf02983377
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00256-021-03841-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140270891
    206 https://doi.org/10.1007/s00256-021-03841-5
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00277-013-1786-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018895058
    209 https://doi.org/10.1007/s00277-013-1786-1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s002770100361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024347091
    212 https://doi.org/10.1007/s002770100361
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00330-005-0055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035920967
    215 https://doi.org/10.1007/s00330-005-0055-7
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00330-010-1950-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030987801
    218 https://doi.org/10.1007/s00330-010-1950-0
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00330-011-2116-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013192489
    221 https://doi.org/10.1007/s00330-011-2116-4
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00330-013-2792-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049854576
    224 https://doi.org/10.1007/s00330-013-2792-3
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00330-014-3324-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033580225
    227 https://doi.org/10.1007/s00330-014-3324-5
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00330-017-4907-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090275851
    230 https://doi.org/10.1007/s00330-017-4907-8
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00330-017-5079-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092666374
    233 https://doi.org/10.1007/s00330-017-5079-2
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s11547-018-0955-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109903218
    236 https://doi.org/10.1007/s11547-018-0955-7
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/bmt.2009.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045290019
    239 https://doi.org/10.1038/bmt.2009.176
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/leu.2010.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016254772
    242 https://doi.org/10.1038/leu.2010.60
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/leu.2015.338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017375408
    245 https://doi.org/10.1038/leu.2015.338
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/sj.leu.2404284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033553106
    248 https://doi.org/10.1038/sj.leu.2404284
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/1470-7330-14-s1-p33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083684048
    251 https://doi.org/10.1186/1470-7330-14-s1-p33
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/s40644-020-0293-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124454052
    254 https://doi.org/10.1186/s40644-020-0293-6
    255 rdf:type schema:CreativeWork
    256 grid-institutes:grid.17635.36 schema:alternateName Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
    257 schema:name Vascular and Interventional Radiology, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
    258 rdf:type schema:Organization
    259 grid-institutes:grid.240145.6 schema:alternateName Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
    260 schema:name Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
    261 rdf:type schema:Organization
    262 grid-institutes:grid.240614.5 schema:alternateName Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
    263 schema:name Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
    264 rdf:type schema:Organization
    265 grid-institutes:grid.34477.33 schema:alternateName Department of Oncology, University of Washington, 98105, Seattle, WA, USA
    266 Department of Radiology, Division Abdominal Imaging, University of Washington, 98105, Seattle, WA, USA
    267 Department of Radiology, Division Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, 98105, Seattle, WA, USA
    268 schema:name Department of Oncology, University of Washington, 98105, Seattle, WA, USA
    269 Department of Radiology, Division Abdominal Imaging, University of Washington, 98105, Seattle, WA, USA
    270 Department of Radiology, Division Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box 354755, 98105, Seattle, WA, USA
    271 rdf:type schema:Organization
    272 grid-institutes:grid.411705.6 schema:alternateName Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
    273 Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
    274 schema:name Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
    275 Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
    276 rdf:type schema:Organization
    277 grid-institutes:grid.7563.7 schema:alternateName University Milano Bicocca, Milan, Italy
    278 schema:name Department of Radiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
    279 University Milano Bicocca, Milan, Italy
    280 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...