Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-13

AUTHORS

Kishore Rajendran, Francis Baffour, Garret Powell, Katrina Glazebrook, Jamison Thorne, Nicholas Larson, Shuai Leng, Cynthia McCollough, Joel Fletcher

ABSTRACT

ObjectiveTo compare the image quality of ultra-high-resolution wrist CTs acquired on photon-counting detector CT versus conventional energy-integrating-detector CT systems.Materials and methodsParticipants were scanned on a photon-counting-detector CT system after clinical energy-integrating detector CTs. Energy-integrating-detector CT scan parameters: comb filter-based ultra-high-resolution mode, 120 kV, 250 mAs, Ur70 or Ur73 kernel, 0.4- or 0.6-mm section thickness. Photon-counting-detector CT scan parameters: non-comb-based ultra-high-resolution mode, 120 kV, 120 mAs, Br84 kernel, 0.4-mm section thickness. Two musculoskeletal radiologists blinded to CT system, scored specific osseous structures using a 5-point Likert scale (1 to 5). The Wilcoxon rank-sum test was used for statistical analysis of reader scores. Paired t-test was used to compare volume CT dose index, bone CT number, and image noise between CT systems. P-value < 0.05 was considered statistically significant.ResultsTwelve wrists (mean participant age 55.3 ± 17.8, 6 females, 6 males) were included. The mean volume CT dose index was lower for photon-counting detector CT (9.6 ± 0.1 mGy versus 19.0 ± 6.7 mGy, p < .001). Photon-counting-detector CT images had higher Likert scores for visualization of osseous structures (median score = 4, p < 0.001). The mean bone CT number was higher in photon-counting-detector CT images (1946 ± 77 HU versus 1727 ± 49 HU, p < 0.001). Conversely, there was no difference in the mean image noise of the two CT systems (63 ± 6 HU versus 61 ± 6 HU, p = 0.13).ConclusionUltra-high-resolution imaging with photon-counting-detector CT depicted wrist structures more clearly than conventional energy-integrating-detector CT despite a 49% radiation dose reduction. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00256-022-04117-2

DOI

http://dx.doi.org/10.1007/s00256-022-04117-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149442193

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35831718


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajendran", 
        "givenName": "Kishore", 
        "id": "sg:person.01273570264.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273570264.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baffour", 
        "givenName": "Francis", 
        "id": "sg:person.01047564461.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047564461.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "Garret", 
        "id": "sg:person.07711676367.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07711676367.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glazebrook", 
        "givenName": "Katrina", 
        "id": "sg:person.01017670174.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017670174.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorne", 
        "givenName": "Jamison", 
        "id": "sg:person.011107675425.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107675425.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larson", 
        "givenName": "Nicholas", 
        "id": "sg:person.01250131156.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250131156.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leng", 
        "givenName": "Shuai", 
        "id": "sg:person.01076131742.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076131742.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCollough", 
        "givenName": "Cynthia", 
        "id": "sg:person.010364077757.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364077757.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fletcher", 
        "givenName": "Joel", 
        "id": "sg:person.0621221404.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41523-020-00207-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1134288319", 
          "https://doi.org/10.1038/s41523-020-00207-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-019-06635-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124793393", 
          "https://doi.org/10.1007/s00330-019-06635-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-13", 
    "datePublishedReg": "2022-07-13", 
    "description": "Abstract\nObjectiveTo compare the image quality of ultra-high-resolution wrist CTs acquired on photon-counting detector CT versus conventional energy-integrating-detector CT systems.Materials and methodsParticipants were scanned on a photon-counting-detector CT system\u00a0after clinical energy-integrating detector CTs. Energy-integrating-detector CT scan parameters: comb filter-based ultra-high-resolution mode, 120\u00a0kV, 250 mAs, Ur70 or Ur73 kernel, 0.4- or 0.6-mm section thickness. Photon-counting-detector CT scan parameters: non-comb-based ultra-high-resolution mode, 120\u00a0kV, 120 mAs, Br84 kernel, 0.4-mm section thickness. Two musculoskeletal radiologists blinded to CT system, scored specific osseous structures using a 5-point Likert scale (1 to 5). The Wilcoxon rank-sum test was used for statistical analysis of reader scores. Paired t-test was used to compare volume CT dose index, bone CT number, and image noise between CT systems. P-value\u2009<\u20090.05 was considered statistically significant.ResultsTwelve wrists (mean participant age 55.3\u2009\u00b1\u200917.8, 6 females, 6 males) were included. The mean volume CT dose index was lower for photon-counting detector CT (9.6\u2009\u00b1\u20090.1\u00a0mGy versus 19.0\u2009\u00b1\u20096.7\u00a0mGy, p\u2009<\u2009.001). Photon-counting-detector CT images had higher Likert scores for visualization of osseous structures (median score\u2009=\u20094, p\u2009<\u20090.001). The mean bone CT number was higher in photon-counting-detector CT images (1946\u2009\u00b1\u200977 HU versus 1727\u2009\u00b1\u200949 HU, p\u2009<\u20090.001). Conversely, there was no difference in the mean image noise of the two CT systems (63\u2009\u00b1\u20096 HU versus 61\u2009\u00b1\u20096 HU, p\u2009=\u20090.13).ConclusionUltra-high-resolution imaging with photon-counting-detector CT depicted wrist structures more clearly than conventional energy-integrating-detector CT despite a 49% radiation dose reduction.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00256-022-04117-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086201", 
        "issn": [
          "0364-2348", 
          "1432-2161"
        ], 
        "name": "Skeletal Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "resolution mode", 
      "section thickness", 
      "image noise", 
      "kV", 
      "thickness", 
      "CT system", 
      "noise", 
      "wrist structures", 
      "image quality", 
      "detector CT system", 
      "system", 
      "mode", 
      "structure", 
      "materials", 
      "osseous structures", 
      "CT numbers", 
      "scan parameters", 
      "parameters", 
      "images", 
      "visualization", 
      "test", 
      "reduction", 
      "Ma", 
      "CT images", 
      "quality", 
      "detector CT", 
      "kernel", 
      "scale", 
      "analysis", 
      "number", 
      "index", 
      "wrist", 
      "imaging", 
      "statistical analysis", 
      "radiation dose reduction", 
      "low radiation dose", 
      "radiation dose", 
      "differences", 
      "dose index", 
      "CT", 
      "CT scan parameters", 
      "reader scores", 
      "CT dose index", 
      "musculoskeletal radiologists", 
      "dose reduction", 
      "Wilcoxon rank sum test", 
      "volume CT dose index", 
      "p-value", 
      "dose", 
      "rank sum test", 
      "t-test", 
      "mean volume CT dose index", 
      "Likert scores", 
      "mean image noise", 
      "photon-counting detector CT", 
      "radiologists", 
      "energy-integrating detector CT", 
      "Likert scale", 
      "ObjectiveTo", 
      "scores", 
      "MethodsParticipants", 
      "highest Likert scores"
    ], 
    "name": "Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149442193"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00256-022-04117-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35831718"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00256-022-04117-2", 
      "https://app.dimensions.ai/details/publication/pub.1149442193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_953.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00256-022-04117-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04117-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04117-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04117-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00256-022-04117-2'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      87 URIs      77 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00256-022-04117-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N4f60ed86589a496c82e885a433907021
4 schema:citation sg:pub.10.1007/s00330-019-06635-5
5 sg:pub.10.1038/s41523-020-00207-3
6 schema:datePublished 2022-07-13
7 schema:datePublishedReg 2022-07-13
8 schema:description Abstract ObjectiveTo compare the image quality of ultra-high-resolution wrist CTs acquired on photon-counting detector CT versus conventional energy-integrating-detector CT systems.Materials and methodsParticipants were scanned on a photon-counting-detector CT system after clinical energy-integrating detector CTs. Energy-integrating-detector CT scan parameters: comb filter-based ultra-high-resolution mode, 120 kV, 250 mAs, Ur70 or Ur73 kernel, 0.4- or 0.6-mm section thickness. Photon-counting-detector CT scan parameters: non-comb-based ultra-high-resolution mode, 120 kV, 120 mAs, Br84 kernel, 0.4-mm section thickness. Two musculoskeletal radiologists blinded to CT system, scored specific osseous structures using a 5-point Likert scale (1 to 5). The Wilcoxon rank-sum test was used for statistical analysis of reader scores. Paired t-test was used to compare volume CT dose index, bone CT number, and image noise between CT systems. P-value < 0.05 was considered statistically significant.ResultsTwelve wrists (mean participant age 55.3 ± 17.8, 6 females, 6 males) were included. The mean volume CT dose index was lower for photon-counting detector CT (9.6 ± 0.1 mGy versus 19.0 ± 6.7 mGy, p < .001). Photon-counting-detector CT images had higher Likert scores for visualization of osseous structures (median score = 4, p < 0.001). The mean bone CT number was higher in photon-counting-detector CT images (1946 ± 77 HU versus 1727 ± 49 HU, p < 0.001). Conversely, there was no difference in the mean image noise of the two CT systems (63 ± 6 HU versus 61 ± 6 HU, p = 0.13).ConclusionUltra-high-resolution imaging with photon-counting-detector CT depicted wrist structures more clearly than conventional energy-integrating-detector CT despite a 49% radiation dose reduction.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf sg:journal.1086201
12 schema:keywords CT
13 CT dose index
14 CT images
15 CT numbers
16 CT scan parameters
17 CT system
18 Likert scale
19 Likert scores
20 Ma
21 MethodsParticipants
22 ObjectiveTo
23 Wilcoxon rank sum test
24 analysis
25 detector CT
26 detector CT system
27 differences
28 dose
29 dose index
30 dose reduction
31 energy-integrating detector CT
32 highest Likert scores
33 image noise
34 image quality
35 images
36 imaging
37 index
38 kV
39 kernel
40 low radiation dose
41 materials
42 mean image noise
43 mean volume CT dose index
44 mode
45 musculoskeletal radiologists
46 noise
47 number
48 osseous structures
49 p-value
50 parameters
51 photon-counting detector CT
52 quality
53 radiation dose
54 radiation dose reduction
55 radiologists
56 rank sum test
57 reader scores
58 reduction
59 resolution mode
60 scale
61 scan parameters
62 scores
63 section thickness
64 statistical analysis
65 structure
66 system
67 t-test
68 test
69 thickness
70 visualization
71 volume CT dose index
72 wrist
73 wrist structures
74 schema:name Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT
75 schema:pagination 1-7
76 schema:productId N506e262b1a4943bd81b344d29d1f06da
77 N5d05d41c4cde407b91dbdb7fc5d91510
78 Nf46140ed7d85482d95fbe126eaf0b802
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149442193
80 https://doi.org/10.1007/s00256-022-04117-2
81 schema:sdDatePublished 2022-10-01T06:50
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N2b2fce30626f4f6f90094e1a1bdf4e98
84 schema:url https://doi.org/10.1007/s00256-022-04117-2
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N2b2fce30626f4f6f90094e1a1bdf4e98 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N4f60ed86589a496c82e885a433907021 rdf:first sg:person.01273570264.11
91 rdf:rest N5476a1146dfe4cd4a8e0172bea29cc8b
92 N506e262b1a4943bd81b344d29d1f06da schema:name dimensions_id
93 schema:value pub.1149442193
94 rdf:type schema:PropertyValue
95 N5476a1146dfe4cd4a8e0172bea29cc8b rdf:first sg:person.01047564461.11
96 rdf:rest Nd5440fcda36c4ca99d67aded8f1559cc
97 N57222c88eaaf4a0d90b087e921ec1ca1 rdf:first sg:person.0621221404.12
98 rdf:rest rdf:nil
99 N5d05d41c4cde407b91dbdb7fc5d91510 schema:name pubmed_id
100 schema:value 35831718
101 rdf:type schema:PropertyValue
102 N84d7c297f94a4214bda48ecc41506765 rdf:first sg:person.010364077757.63
103 rdf:rest N57222c88eaaf4a0d90b087e921ec1ca1
104 N92f1ff3e29a7429da0e19ed29e4f0306 rdf:first sg:person.01076131742.53
105 rdf:rest N84d7c297f94a4214bda48ecc41506765
106 Nae4dbbf4cf8a485687c63ce1bddccab0 rdf:first sg:person.011107675425.70
107 rdf:rest Ne77e96d5d0d44276a76977c22961f328
108 Nc27084d3d32a4bf4b42567d276e85e75 rdf:first sg:person.01017670174.00
109 rdf:rest Nae4dbbf4cf8a485687c63ce1bddccab0
110 Nd5440fcda36c4ca99d67aded8f1559cc rdf:first sg:person.07711676367.26
111 rdf:rest Nc27084d3d32a4bf4b42567d276e85e75
112 Ne77e96d5d0d44276a76977c22961f328 rdf:first sg:person.01250131156.40
113 rdf:rest N92f1ff3e29a7429da0e19ed29e4f0306
114 Nf46140ed7d85482d95fbe126eaf0b802 schema:name doi
115 schema:value 10.1007/s00256-022-04117-2
116 rdf:type schema:PropertyValue
117 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
118 schema:name Medical and Health Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
121 schema:name Clinical Sciences
122 rdf:type schema:DefinedTerm
123 sg:journal.1086201 schema:issn 0364-2348
124 1432-2161
125 schema:name Skeletal Radiology
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.01017670174.00 schema:affiliation grid-institutes:grid.66875.3a
129 schema:familyName Glazebrook
130 schema:givenName Katrina
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017670174.00
132 rdf:type schema:Person
133 sg:person.010364077757.63 schema:affiliation grid-institutes:grid.66875.3a
134 schema:familyName McCollough
135 schema:givenName Cynthia
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010364077757.63
137 rdf:type schema:Person
138 sg:person.01047564461.11 schema:affiliation grid-institutes:grid.66875.3a
139 schema:familyName Baffour
140 schema:givenName Francis
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047564461.11
142 rdf:type schema:Person
143 sg:person.01076131742.53 schema:affiliation grid-institutes:grid.66875.3a
144 schema:familyName Leng
145 schema:givenName Shuai
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076131742.53
147 rdf:type schema:Person
148 sg:person.011107675425.70 schema:affiliation grid-institutes:grid.66875.3a
149 schema:familyName Thorne
150 schema:givenName Jamison
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011107675425.70
152 rdf:type schema:Person
153 sg:person.01250131156.40 schema:affiliation grid-institutes:grid.66875.3a
154 schema:familyName Larson
155 schema:givenName Nicholas
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250131156.40
157 rdf:type schema:Person
158 sg:person.01273570264.11 schema:affiliation grid-institutes:grid.66875.3a
159 schema:familyName Rajendran
160 schema:givenName Kishore
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273570264.11
162 rdf:type schema:Person
163 sg:person.0621221404.12 schema:affiliation grid-institutes:grid.66875.3a
164 schema:familyName Fletcher
165 schema:givenName Joel
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621221404.12
167 rdf:type schema:Person
168 sg:person.07711676367.26 schema:affiliation grid-institutes:grid.66875.3a
169 schema:familyName Powell
170 schema:givenName Garret
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07711676367.26
172 rdf:type schema:Person
173 sg:pub.10.1007/s00330-019-06635-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124793393
174 https://doi.org/10.1007/s00330-019-06635-5
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s41523-020-00207-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134288319
177 https://doi.org/10.1038/s41523-020-00207-3
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.66875.3a schema:alternateName Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
180 Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA
181 schema:name Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
182 Department of Radiology, Mayo Clinic, 200 1st Street SW, 55902, Rochester, MN, USA
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...