Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Laura Filograna, Nicola Magarelli, Antonio Leone, Chiara de Waure, Giovanna Elisa Calabrò, Tim Finkenstaedt, Michael John Thali, Lorenzo Bonomo

ABSTRACT

OBJECTIVES: The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT. MATERIALS AND METHODS: Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0 mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively. RESULTS: The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36 % and 30 % respectively, compared with 0 % and 33.3 % of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2. CONCLUSIONS: This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT. More... »

PAGES

937-947

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00256-016-2377-8

DOI

http://dx.doi.org/10.1007/s00256-016-2377-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026537257

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27033858


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadaver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostheses and Implants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy", 
            "Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filograna", 
        "givenName": "Laura", 
        "id": "sg:person.0740614565.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740614565.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magarelli", 
        "givenName": "Nicola", 
        "id": "sg:person.01173056226.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173056226.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leone", 
        "givenName": "Antonio", 
        "id": "sg:person.010650731640.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650731640.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Research Centre for Health Technology Assessment, Department of Public Health, Section of Hygiene, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo F. Vito 1, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Waure", 
        "givenName": "Chiara", 
        "id": "sg:person.01216255670.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216255670.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Research Centre for Health Technology Assessment, Department of Public Health, Section of Hygiene, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo F. Vito 1, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calabr\u00f2", 
        "givenName": "Giovanna Elisa", 
        "id": "sg:person.01146566423.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146566423.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Finkenstaedt", 
        "givenName": "Tim", 
        "id": "sg:person.01254065152.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254065152.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thali", 
        "givenName": "Michael John", 
        "id": "sg:person.01203775304.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203775304.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonomo", 
        "givenName": "Lorenzo", 
        "id": "sg:person.01015413034.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015413034.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2011.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002350103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00256-013-1802-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006754248", 
          "https://doi.org/10.1007/s00256-013-1802-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3276777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2303021726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007957153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-6111(94)90080-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009025785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3484090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010203054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.26si065512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181e94384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011872905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181e94384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011872905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2501-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013066689", 
          "https://doi.org/10.1007/s00330-012-2501-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.273065087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1300-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013715330", 
          "https://doi.org/10.1007/s00330-009-1300-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1300-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013715330", 
          "https://doi.org/10.1007/s00330-009-1300-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2013.14.6.886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014961294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00256-015-2155-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019101564", 
          "https://doi.org/10.1007/s00256-015-2155-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028031824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037833891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1358303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038375371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2062-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045347713", 
          "https://doi.org/10.1007/s00330-011-2062-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2218062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045754575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-004-2263-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047150473", 
          "https://doi.org/10.1007/s00330-004-2263-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.246045065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048428298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0092414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049138921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000086495.96457.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049400764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000086495.96457.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049400764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2012.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050216159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b0a2f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b0a2f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b0a2f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2002-23160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057413581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2006-934219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057458627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200001000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200001000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200001000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2008.929103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302837"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "OBJECTIVES: The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT.\nMATERIALS AND METHODS: Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0\u00a0mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130\u00a0keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively.\nRESULTS: The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36\u00a0% and 30\u00a0% respectively, compared with 0\u00a0% and 33.3\u00a0% of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2.\nCONCLUSIONS: This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00256-016-2377-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086201", 
        "issn": [
          "0364-2348", 
          "1432-2161"
        ], 
        "name": "Skeletal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices", 
    "pagination": "937-947", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e6cc915c43259c3783029c996f576677b9f5fa7fdddaa142ea4134a5b576043"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27033858"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7701953"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00256-016-2377-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026537257"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00256-016-2377-8", 
      "https://app.dimensions.ai/details/publication/pub.1026537257"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00256-016-2377-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00256-016-2377-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00256-016-2377-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00256-016-2377-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00256-016-2377-8'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      71 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00256-016-2377-8 schema:about N0d00cb2ef78e43d090e3b390f389313e
2 N36c68a1d60ee43a0beee185227c15759
3 N37754179a9f64a7b8dde6e747398ee7b
4 N3c4a95deb1784b68a044b71b9bdbd95b
5 N44040e871afe4c9c8eae58e993067e03
6 N4e5b0a87727041a1b9fdf7418f05f558
7 N7bb24d5f80a94e5289dc4114c3603455
8 N81c0f4c48f9749fea5c923bed64a537d
9 Nac7b002b7bfc425ba055b9fc037a837e
10 Nca636a9e438c47e6887da83d4cfb5646
11 Ne0037613c78e4ee2ac41b92960a00caf
12 Ne7923c5a3fe24664a26626b0fbe49053
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author N0e061b43a0bd4a338748502bbba64d93
16 schema:citation sg:pub.10.1007/s00256-013-1802-5
17 sg:pub.10.1007/s00256-015-2155-z
18 sg:pub.10.1007/s00330-004-2263-y
19 sg:pub.10.1007/s00330-009-1300-2
20 sg:pub.10.1007/s00330-011-2062-1
21 sg:pub.10.1007/s00330-012-2501-7
22 https://doi.org/10.1016/0895-6111(94)90080-9
23 https://doi.org/10.1016/j.acra.2011.05.009
24 https://doi.org/10.1016/j.acra.2012.08.006
25 https://doi.org/10.1016/j.rcl.2008.10.006
26 https://doi.org/10.1055/s-2002-23160
27 https://doi.org/10.1055/s-2006-934219
28 https://doi.org/10.1097/00004728-200001000-00029
29 https://doi.org/10.1097/01.rli.0000086495.96457.54
30 https://doi.org/10.1097/rli.0b013e3181b0a2f9
31 https://doi.org/10.1097/rli.0b013e3181e94384
32 https://doi.org/10.1097/rli.0b013e31824c86a3
33 https://doi.org/10.1109/tmi.2008.929103
34 https://doi.org/10.1118/1.1358303
35 https://doi.org/10.1118/1.2218062
36 https://doi.org/10.1118/1.3276777
37 https://doi.org/10.1118/1.3484090
38 https://doi.org/10.1148/radiol.10100526
39 https://doi.org/10.1148/radiol.2303021726
40 https://doi.org/10.1148/rg.246045065
41 https://doi.org/10.1148/rg.26si065512
42 https://doi.org/10.1148/rg.273065087
43 https://doi.org/10.1371/journal.pone.0092414
44 https://doi.org/10.2214/ajr.12.9382
45 https://doi.org/10.3348/kjr.2013.14.6.886
46 schema:datePublished 2016-07
47 schema:datePublishedReg 2016-07-01
48 schema:description OBJECTIVES: The objective was to evaluate the performances of dose-reduced dual-energy computed tomography (DECT) in decreasing metallic artifacts from orthopedic devices compared with dose-neutral DECT, dose-neutral single-energy computed tomography (SECT), and dose-reduced SECT. MATERIALS AND METHODS: Thirty implants in 20 consecutive cadavers underwent both SECT and DECT at three fixed CT dose indexes (CTDI): 20.0, 10.0, and 5.0 mGy. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV, and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. In each group, the image quality of the seven monoenergetic images and of the SECT image was assessed qualitatively and quantitatively by visually rating and by measuring the maximum streak artifact respectively. RESULTS: The comparison between SECT and OPTkeV evaluated overall within all groups showed a significant difference (p <0.001), with OPTkeV images providing better images. Comparing OPTkeV with the other DECT images, a significant difference was shown (p <0.001), with OPTkeV and 130-keV images providing the qualitatively best results. The OPTkeV images of 5.0-mGy acquisitions provided percentages of images with scores 1 and 2 of 36 % and 30 % respectively, compared with 0 % and 33.3 % of the corresponding SECT images of 10- and 20-mGy acquisitions. Moreover, DECT reconstructions at the OPTkeV of the low-dose group showed higher CT numbers than the SECT images of dose groups 1 and 2. CONCLUSIONS: This study demonstrates that low-dose DECT permits a reduction of artifacts due to metallic implants to be obtained in a similar manner to neutral-dose DECT and better than reduced or neutral-dose SECT.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N437326d6ac5d43f3917781b420e45459
53 Nff73cc535f3f46a89e11ac2016f64dc0
54 sg:journal.1086201
55 schema:name Performances of low-dose dual-energy CT in reducing artifacts from implanted metallic orthopedic devices
56 schema:pagination 937-947
57 schema:productId N24222a6148c24fce9ab8d22de2cb413c
58 N33c089655ed746759f0387fd3bf5d58d
59 Nb67154e92fe34a3ea447a23aeb930c53
60 Nd6d1804912b045a39c5daa184d4f6c25
61 Nfa7b8316e2f14068969807d2fe6530f7
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026537257
63 https://doi.org/10.1007/s00256-016-2377-8
64 schema:sdDatePublished 2019-04-10T19:09
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N1ef20d3ca8654c3f8cba9eb648ef52b0
67 schema:url http://link.springer.com/10.1007%2Fs00256-016-2377-8
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N08ab93a5de83414c88a4108642e33acf rdf:first sg:person.01203775304.28
72 rdf:rest N32c2be8c32304a0c953a92ba0245b46e
73 N0d00cb2ef78e43d090e3b390f389313e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Aged, 80 and over
75 rdf:type schema:DefinedTerm
76 N0e061b43a0bd4a338748502bbba64d93 rdf:first sg:person.0740614565.45
77 rdf:rest Ncd2104aec98d4d95b73b086fd9b39464
78 N174be24491b5478fa91d3a320a493fd4 rdf:first sg:person.010650731640.46
79 rdf:rest Ncef7296873b14568977d4808efb47322
80 N1ef20d3ca8654c3f8cba9eb648ef52b0 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N24222a6148c24fce9ab8d22de2cb413c schema:name doi
83 schema:value 10.1007/s00256-016-2377-8
84 rdf:type schema:PropertyValue
85 N32c2be8c32304a0c953a92ba0245b46e rdf:first sg:person.01015413034.57
86 rdf:rest rdf:nil
87 N33c089655ed746759f0387fd3bf5d58d schema:name dimensions_id
88 schema:value pub.1026537257
89 rdf:type schema:PropertyValue
90 N36c68a1d60ee43a0beee185227c15759 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Tomography, X-Ray Computed
92 rdf:type schema:DefinedTerm
93 N37754179a9f64a7b8dde6e747398ee7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Female
95 rdf:type schema:DefinedTerm
96 N3c4a95deb1784b68a044b71b9bdbd95b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Aged
98 rdf:type schema:DefinedTerm
99 N437326d6ac5d43f3917781b420e45459 schema:issueNumber 7
100 rdf:type schema:PublicationIssue
101 N44040e871afe4c9c8eae58e993067e03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Male
103 rdf:type schema:DefinedTerm
104 N4e5b0a87727041a1b9fdf7418f05f558 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cadaver
106 rdf:type schema:DefinedTerm
107 N553484d8ee4a4073b2c180d0eab0b656 rdf:first sg:person.01254065152.18
108 rdf:rest N08ab93a5de83414c88a4108642e33acf
109 N7bb24d5f80a94e5289dc4114c3603455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Prostheses and Implants
111 rdf:type schema:DefinedTerm
112 N81c0f4c48f9749fea5c923bed64a537d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Middle Aged
114 rdf:type schema:DefinedTerm
115 N928e2eefb9a443f088df5f78266786b0 rdf:first sg:person.01146566423.87
116 rdf:rest N553484d8ee4a4073b2c180d0eab0b656
117 Nac7b002b7bfc425ba055b9fc037a837e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Artifacts
119 rdf:type schema:DefinedTerm
120 Nb67154e92fe34a3ea447a23aeb930c53 schema:name readcube_id
121 schema:value 7e6cc915c43259c3783029c996f576677b9f5fa7fdddaa142ea4134a5b576043
122 rdf:type schema:PropertyValue
123 Nca636a9e438c47e6887da83d4cfb5646 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Adult
125 rdf:type schema:DefinedTerm
126 Ncd2104aec98d4d95b73b086fd9b39464 rdf:first sg:person.01173056226.10
127 rdf:rest N174be24491b5478fa91d3a320a493fd4
128 Ncef7296873b14568977d4808efb47322 rdf:first sg:person.01216255670.09
129 rdf:rest N928e2eefb9a443f088df5f78266786b0
130 Nd6d1804912b045a39c5daa184d4f6c25 schema:name pubmed_id
131 schema:value 27033858
132 rdf:type schema:PropertyValue
133 Ne0037613c78e4ee2ac41b92960a00caf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Prospective Studies
135 rdf:type schema:DefinedTerm
136 Ne7923c5a3fe24664a26626b0fbe49053 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 Nfa7b8316e2f14068969807d2fe6530f7 schema:name nlm_unique_id
140 schema:value 7701953
141 rdf:type schema:PropertyValue
142 Nff73cc535f3f46a89e11ac2016f64dc0 schema:volumeNumber 45
143 rdf:type schema:PublicationVolume
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
148 schema:name Clinical Sciences
149 rdf:type schema:DefinedTerm
150 sg:journal.1086201 schema:issn 0364-2348
151 1432-2161
152 schema:name Skeletal Radiology
153 rdf:type schema:Periodical
154 sg:person.01015413034.57 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
155 schema:familyName Bonomo
156 schema:givenName Lorenzo
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015413034.57
158 rdf:type schema:Person
159 sg:person.010650731640.46 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
160 schema:familyName Leone
161 schema:givenName Antonio
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650731640.46
163 rdf:type schema:Person
164 sg:person.01146566423.87 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
165 schema:familyName Calabrò
166 schema:givenName Giovanna Elisa
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146566423.87
168 rdf:type schema:Person
169 sg:person.01173056226.10 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
170 schema:familyName Magarelli
171 schema:givenName Nicola
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173056226.10
173 rdf:type schema:Person
174 sg:person.01203775304.28 schema:affiliation https://www.grid.ac/institutes/grid.7400.3
175 schema:familyName Thali
176 schema:givenName Michael John
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203775304.28
178 rdf:type schema:Person
179 sg:person.01216255670.09 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
180 schema:familyName de Waure
181 schema:givenName Chiara
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216255670.09
183 rdf:type schema:Person
184 sg:person.01254065152.18 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
185 schema:familyName Finkenstaedt
186 schema:givenName Tim
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254065152.18
188 rdf:type schema:Person
189 sg:person.0740614565.45 schema:affiliation https://www.grid.ac/institutes/grid.7400.3
190 schema:familyName Filograna
191 schema:givenName Laura
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740614565.45
193 rdf:type schema:Person
194 sg:pub.10.1007/s00256-013-1802-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006754248
195 https://doi.org/10.1007/s00256-013-1802-5
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00256-015-2155-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019101564
198 https://doi.org/10.1007/s00256-015-2155-z
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00330-004-2263-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047150473
201 https://doi.org/10.1007/s00330-004-2263-y
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00330-009-1300-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013715330
204 https://doi.org/10.1007/s00330-009-1300-2
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00330-011-2062-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045347713
207 https://doi.org/10.1007/s00330-011-2062-1
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s00330-012-2501-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013066689
210 https://doi.org/10.1007/s00330-012-2501-7
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0895-6111(94)90080-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009025785
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.acra.2011.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002350103
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.acra.2012.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050216159
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.rcl.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028031824
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1055/s-2002-23160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057413581
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1055/s-2006-934219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057458627
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1097/00004728-200001000-00029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060189758
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1097/01.rli.0000086495.96457.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049400764
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1097/rli.0b013e3181b0a2f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051330812
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1097/rli.0b013e3181e94384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011872905
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1097/rli.0b013e31824c86a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900495
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/tmi.2008.929103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695336
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1118/1.1358303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038375371
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1118/1.2218062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045754575
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1118/1.3276777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890088
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1118/1.3484090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010203054
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1148/radiol.10100526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037833891
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1148/radiol.2303021726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007957153
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1148/rg.246045065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048428298
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1148/rg.26si065512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587373
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1148/rg.273065087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701269
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0092414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049138921
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2214/ajr.12.9382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302837
257 rdf:type schema:CreativeWork
258 https://doi.org/10.3348/kjr.2013.14.6.886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014961294
259 rdf:type schema:CreativeWork
260 https://www.grid.ac/institutes/grid.412004.3 schema:alternateName University Hospital of Zurich
261 schema:name Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.7400.3 schema:alternateName University of Zurich
264 schema:name Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
265 Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, School of Medicine, University Hospital “A. Gemelli”, Largo A. Gemelli 8, 00168, Rome, Italy
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.8142.f schema:alternateName Catholic University of the Sacred Heart
268 schema:name Department of Radiological Sciences, Institute of Radiology, Catholic University of Rome, School of Medicine, University Hospital “A. Gemelli”, Largo A. Gemelli 8, 00168, Rome, Italy
269 Research Centre for Health Technology Assessment, Department of Public Health, Section of Hygiene, Catholic University of Rome, School of Medicine, University Hospital “A. Gemelli”, Largo F. Vito 1, 00168, Rome, Italy
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...