Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Laura Filograna, Nicola Magarelli, Antonio Leone, Roman Guggenberger, Sebastian Winklhofer, Michael John Thali, Lorenzo Bonomo

ABSTRACT

OBJECTIVES: The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed. MATERIALS AND METHODS: Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact. RESULTS: Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6 ± 4.9 with a range of 130 to 148 keV. CONCLUSIONS: This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging. More... »

PAGES

1287-1294

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00256-015-2155-z

DOI

http://dx.doi.org/10.1007/s00256-015-2155-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019101564

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25962510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Autopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Joint Prosthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland", 
            "Department of Radiological Sciences, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filograna", 
        "givenName": "Laura", 
        "id": "sg:person.0740614565.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740614565.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Radiological Sciences, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magarelli", 
        "givenName": "Nicola", 
        "id": "sg:person.01173056226.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173056226.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Radiological Sciences, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leone", 
        "givenName": "Antonio", 
        "id": "sg:person.010650731640.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650731640.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guggenberger", 
        "givenName": "Roman", 
        "id": "sg:person.0607644454.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607644454.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winklhofer", 
        "givenName": "Sebastian", 
        "id": "sg:person.01070607206.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070607206.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.7400.3", 
          "name": [
            "Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thali", 
        "givenName": "Michael John", 
        "id": "sg:person.01203775304.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203775304.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Catholic University of the Sacred Heart", 
          "id": "https://www.grid.ac/institutes/grid.8142.f", 
          "name": [
            "Department of Radiological Sciences, Catholic University of Rome, School of Medicine, University Hospital \u201cA. Gemelli\u201d, Largo A. Gemelli 8, 00168, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonomo", 
        "givenName": "Lorenzo", 
        "id": "sg:person.01015413034.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015413034.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2011.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002350103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00256-013-1802-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006754248", 
          "https://doi.org/10.1007/s00256-013-1802-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3276777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0895-6111(94)90080-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009025785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3484090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010203054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.26si065512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181e94384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011872905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181e94384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011872905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2501-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013066689", 
          "https://doi.org/10.1007/s00330-012-2501-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12024-013-9420-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013177009", 
          "https://doi.org/10.1007/s12024-013-9420-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.273065087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31824c86a3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013900495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-005-0038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019579151", 
          "https://doi.org/10.1007/s00414-005-0038-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-005-0038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019579151", 
          "https://doi.org/10.1007/s00414-005-0038-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-007-0223-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020502014", 
          "https://doi.org/10.1007/s11604-007-0223-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.forsciint.2006.05.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031225475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181238d66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032120880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181238d66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032120880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181b251b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035130340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181b251b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035130340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ta.0b013e3181b251b8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035130340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420048339.fmatt", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035899441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420048339.fmatt", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035899441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1358303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038375371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1556-4029.2005.00019.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041245959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1556-4029.2005.00019.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041245959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2062-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045347713", 
          "https://doi.org/10.1007/s00330-011-2062-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2218062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045754575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-004-2263-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047150473", 
          "https://doi.org/10.1007/s00330-004-2263-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.246045065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048428298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b9dbed", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048556324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b9dbed", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048556324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b9dbed", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048556324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2008.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049233773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000086495.96457.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049400764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000086495.96457.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049400764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1440-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050185105", 
          "https://doi.org/10.1007/s00330-009-1440-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1440-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050185105", 
          "https://doi.org/10.1007/s00330-009-1440-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1440-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050185105", 
          "https://doi.org/10.1007/s00330-009-1440-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b0a2f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b0a2f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b0a2f9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051330812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2002-23160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057413581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2006-934219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057458627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200001000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200001000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200001000-00029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060189758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2008.929103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1520/jfs2002166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075260517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.193.1.8090904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082647366"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "OBJECTIVES: The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed.\nMATERIALS AND METHODS: Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130\u00a0keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact.\nRESULTS: Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6\u2009\u00b1\u20094.9 with a range of 130 to 148\u00a0keV.\nCONCLUSIONS: This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00256-015-2155-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086201", 
        "issn": [
          "0364-2348", 
          "1432-2161"
        ], 
        "name": "Skeletal Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies", 
    "pagination": "1287-1294", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5b030a851c3264111373888e120b4368d9c2bb0f26bb25f099556d684eab5184"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25962510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7701953"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00256-015-2155-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019101564"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00256-015-2155-z", 
      "https://app.dimensions.ai/details/publication/pub.1019101564"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00256-015-2155-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00256-015-2155-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00256-015-2155-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00256-015-2155-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00256-015-2155-z'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      21 PREDICATES      78 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00256-015-2155-z schema:about N0d15c1dba84e4440a22892114c6542ae
2 N116e52307209469080c252306ab5bd5b
3 N14b85d81220344558c8947a10e75877d
4 N18ac7d8d5d3243178bee431be8009d6d
5 N3dcde7322ec3401baf96e6389b37f6d2
6 N480972b61d95403ebaf3f9b9b9c127ab
7 N58863a786ac14434afcac4de4ddb926b
8 N7daebc98bad944a7a225f0abd86034a9
9 N87aec620bd9d4f2397f04fae518450da
10 N9f5b903316774703ac2659d425763ab2
11 Na03db51b4f474b01b6d1660dc35d1a02
12 Nae2a5c4069d34b1f8d50721ff383147d
13 Ndec045fcfbb54e7e8163ccfa5c7de26d
14 Nfea5f8194a2245a7ac0528bb7381754c
15 anzsrc-for:09
16 anzsrc-for:0912
17 schema:author N061a07c61d274d5c80b1d9fbbbbfc45a
18 schema:citation sg:pub.10.1007/s00256-013-1802-5
19 sg:pub.10.1007/s00330-004-2263-y
20 sg:pub.10.1007/s00330-009-1440-4
21 sg:pub.10.1007/s00330-011-2062-1
22 sg:pub.10.1007/s00330-012-2501-7
23 sg:pub.10.1007/s00414-005-0038-x
24 sg:pub.10.1007/s11604-007-0223-6
25 sg:pub.10.1007/s12024-013-9420-z
26 https://doi.org/10.1016/0895-6111(94)90080-9
27 https://doi.org/10.1016/j.acra.2011.05.009
28 https://doi.org/10.1016/j.crad.2008.05.008
29 https://doi.org/10.1016/j.forsciint.2006.05.041
30 https://doi.org/10.1055/s-2002-23160
31 https://doi.org/10.1055/s-2006-934219
32 https://doi.org/10.1097/00004728-200001000-00029
33 https://doi.org/10.1097/01.rli.0000086495.96457.54
34 https://doi.org/10.1097/rli.0b013e3181b0a2f9
35 https://doi.org/10.1097/rli.0b013e3181b9dbed
36 https://doi.org/10.1097/rli.0b013e3181e94384
37 https://doi.org/10.1097/rli.0b013e31824c86a3
38 https://doi.org/10.1097/ta.0b013e3181238d66
39 https://doi.org/10.1097/ta.0b013e3181b251b8
40 https://doi.org/10.1109/tmi.2008.929103
41 https://doi.org/10.1111/j.1556-4029.2005.00019.x
42 https://doi.org/10.1118/1.1358303
43 https://doi.org/10.1118/1.2218062
44 https://doi.org/10.1118/1.3276777
45 https://doi.org/10.1118/1.3484090
46 https://doi.org/10.1148/radiology.193.1.8090904
47 https://doi.org/10.1148/rg.246045065
48 https://doi.org/10.1148/rg.26si065512
49 https://doi.org/10.1148/rg.273065087
50 https://doi.org/10.1201/9781420048339.fmatt
51 https://doi.org/10.1520/jfs2002166
52 https://doi.org/10.2307/2529310
53 schema:datePublished 2015-09
54 schema:datePublishedReg 2015-09-01
55 schema:description OBJECTIVES: The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed. MATERIALS AND METHODS: Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact. RESULTS: Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6 ± 4.9 with a range of 130 to 148 keV. CONCLUSIONS: This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N2c585cd7308e4b75a08ed9632064fa2b
60 Nc7c6f06c1eff47c3b6f782000cae9d98
61 sg:journal.1086201
62 schema:name Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies
63 schema:pagination 1287-1294
64 schema:productId N50f5a49e62854ce480f87580110dafcf
65 N5b4de9443f114028a328731150f4478c
66 N94c3265df36a42209acbc2f5954759c5
67 Na252c9d405ae4661af987fd43627aa14
68 Nc16b3402868e4397be9fe2876f5dc5a8
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019101564
70 https://doi.org/10.1007/s00256-015-2155-z
71 schema:sdDatePublished 2019-04-10T17:31
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N447170a05d004c899dd5bd6e77d136ba
74 schema:url http://link.springer.com/10.1007%2Fs00256-015-2155-z
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N061a07c61d274d5c80b1d9fbbbbfc45a rdf:first sg:person.0740614565.45
79 rdf:rest Ne5d7f5d21afa4017aef258b2bbc79bd9
80 N0d15c1dba84e4440a22892114c6542ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Aged, 80 and over
82 rdf:type schema:DefinedTerm
83 N116e52307209469080c252306ab5bd5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Aged
85 rdf:type schema:DefinedTerm
86 N14b85d81220344558c8947a10e75877d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Humans
88 rdf:type schema:DefinedTerm
89 N18ac7d8d5d3243178bee431be8009d6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Reproducibility of Results
91 rdf:type schema:DefinedTerm
92 N2c585cd7308e4b75a08ed9632064fa2b schema:issueNumber 9
93 rdf:type schema:PublicationIssue
94 N3dcde7322ec3401baf96e6389b37f6d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Middle Aged
96 rdf:type schema:DefinedTerm
97 N447170a05d004c899dd5bd6e77d136ba schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N480972b61d95403ebaf3f9b9b9c127ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Autopsy
101 rdf:type schema:DefinedTerm
102 N50f5a49e62854ce480f87580110dafcf schema:name readcube_id
103 schema:value 5b030a851c3264111373888e120b4368d9c2bb0f26bb25f099556d684eab5184
104 rdf:type schema:PropertyValue
105 N58863a786ac14434afcac4de4ddb926b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Joint Prosthesis
107 rdf:type schema:DefinedTerm
108 N5b4de9443f114028a328731150f4478c schema:name pubmed_id
109 schema:value 25962510
110 rdf:type schema:PropertyValue
111 N604f5d6151f8460595883bd38804f29a rdf:first sg:person.01203775304.28
112 rdf:rest N6c7eabcc1b4e4b2880521ed64fbd5251
113 N6c7eabcc1b4e4b2880521ed64fbd5251 rdf:first sg:person.01015413034.57
114 rdf:rest rdf:nil
115 N7962a6372a6d4ffa9f284f7424916134 rdf:first sg:person.010650731640.46
116 rdf:rest Nbc2e476019e34a30b3341d2930bba7d5
117 N7daebc98bad944a7a225f0abd86034a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Metals
119 rdf:type schema:DefinedTerm
120 N87aec620bd9d4f2397f04fae518450da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Artifacts
122 rdf:type schema:DefinedTerm
123 N94c3265df36a42209acbc2f5954759c5 schema:name dimensions_id
124 schema:value pub.1019101564
125 rdf:type schema:PropertyValue
126 N9f5b903316774703ac2659d425763ab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Tomography, X-Ray Computed
128 rdf:type schema:DefinedTerm
129 Na03db51b4f474b01b6d1660dc35d1a02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Sensitivity and Specificity
131 rdf:type schema:DefinedTerm
132 Na252c9d405ae4661af987fd43627aa14 schema:name nlm_unique_id
133 schema:value 7701953
134 rdf:type schema:PropertyValue
135 Nae2a5c4069d34b1f8d50721ff383147d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Radiographic Image Enhancement
137 rdf:type schema:DefinedTerm
138 Nbc2e476019e34a30b3341d2930bba7d5 rdf:first sg:person.0607644454.11
139 rdf:rest Nda178a4c1a40447bb1f73c03142bfe35
140 Nc16b3402868e4397be9fe2876f5dc5a8 schema:name doi
141 schema:value 10.1007/s00256-015-2155-z
142 rdf:type schema:PropertyValue
143 Nc7c6f06c1eff47c3b6f782000cae9d98 schema:volumeNumber 44
144 rdf:type schema:PublicationVolume
145 Nda178a4c1a40447bb1f73c03142bfe35 rdf:first sg:person.01070607206.25
146 rdf:rest N604f5d6151f8460595883bd38804f29a
147 Ndec045fcfbb54e7e8163ccfa5c7de26d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Adult
149 rdf:type schema:DefinedTerm
150 Ne5d7f5d21afa4017aef258b2bbc79bd9 rdf:first sg:person.01173056226.10
151 rdf:rest N7962a6372a6d4ffa9f284f7424916134
152 Nfea5f8194a2245a7ac0528bb7381754c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Radiography, Dual-Energy Scanned Projection
154 rdf:type schema:DefinedTerm
155 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
156 schema:name Engineering
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
159 schema:name Materials Engineering
160 rdf:type schema:DefinedTerm
161 sg:journal.1086201 schema:issn 0364-2348
162 1432-2161
163 schema:name Skeletal Radiology
164 rdf:type schema:Periodical
165 sg:person.01015413034.57 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
166 schema:familyName Bonomo
167 schema:givenName Lorenzo
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015413034.57
169 rdf:type schema:Person
170 sg:person.010650731640.46 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
171 schema:familyName Leone
172 schema:givenName Antonio
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650731640.46
174 rdf:type schema:Person
175 sg:person.01070607206.25 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
176 schema:familyName Winklhofer
177 schema:givenName Sebastian
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070607206.25
179 rdf:type schema:Person
180 sg:person.01173056226.10 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
181 schema:familyName Magarelli
182 schema:givenName Nicola
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173056226.10
184 rdf:type schema:Person
185 sg:person.01203775304.28 schema:affiliation https://www.grid.ac/institutes/grid.7400.3
186 schema:familyName Thali
187 schema:givenName Michael John
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203775304.28
189 rdf:type schema:Person
190 sg:person.0607644454.11 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
191 schema:familyName Guggenberger
192 schema:givenName Roman
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607644454.11
194 rdf:type schema:Person
195 sg:person.0740614565.45 schema:affiliation https://www.grid.ac/institutes/grid.8142.f
196 schema:familyName Filograna
197 schema:givenName Laura
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740614565.45
199 rdf:type schema:Person
200 sg:pub.10.1007/s00256-013-1802-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006754248
201 https://doi.org/10.1007/s00256-013-1802-5
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00330-004-2263-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047150473
204 https://doi.org/10.1007/s00330-004-2263-y
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00330-009-1440-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050185105
207 https://doi.org/10.1007/s00330-009-1440-4
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s00330-011-2062-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045347713
210 https://doi.org/10.1007/s00330-011-2062-1
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s00330-012-2501-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013066689
213 https://doi.org/10.1007/s00330-012-2501-7
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00414-005-0038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019579151
216 https://doi.org/10.1007/s00414-005-0038-x
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s11604-007-0223-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020502014
219 https://doi.org/10.1007/s11604-007-0223-6
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s12024-013-9420-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013177009
222 https://doi.org/10.1007/s12024-013-9420-z
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/0895-6111(94)90080-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009025785
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.acra.2011.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002350103
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.crad.2008.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049233773
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.forsciint.2006.05.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031225475
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1055/s-2002-23160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057413581
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1055/s-2006-934219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057458627
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/00004728-200001000-00029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060189758
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1097/01.rli.0000086495.96457.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049400764
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1097/rli.0b013e3181b0a2f9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051330812
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1097/rli.0b013e3181b9dbed schema:sameAs https://app.dimensions.ai/details/publication/pub.1048556324
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1097/rli.0b013e3181e94384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011872905
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1097/rli.0b013e31824c86a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013900495
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1097/ta.0b013e3181238d66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032120880
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/ta.0b013e3181b251b8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035130340
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/tmi.2008.929103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695336
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.1556-4029.2005.00019.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041245959
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1118/1.1358303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038375371
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1118/1.2218062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045754575
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1118/1.3276777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890088
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1118/1.3484090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010203054
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1148/radiology.193.1.8090904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082647366
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1148/rg.246045065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048428298
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1148/rg.26si065512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587373
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1148/rg.273065087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701269
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1201/9781420048339.fmatt schema:sameAs https://app.dimensions.ai/details/publication/pub.1035899441
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1520/jfs2002166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075260517
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.412004.3 schema:alternateName University Hospital of Zurich
279 schema:name Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.7400.3 schema:alternateName University of Zurich
282 schema:name Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.8142.f schema:alternateName Catholic University of the Sacred Heart
285 schema:name Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057, Zurich, Switzerland
286 Department of Radiological Sciences, Catholic University of Rome, School of Medicine, University Hospital “A. Gemelli”, Largo A. Gemelli 8, 00168, Rome, Italy
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...