Introducing a hybrid artificial intelligence method for high-throughput modeling and optimizing plant tissue culture processes: the establishment of a new ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-10-29

AUTHORS

Mohsen Hesami, Roohangiz Naderi, Masoud Tohidfar

ABSTRACT

Data-driven models in a combination of optimization algorithms could be beneficial methods for predicting and optimizing in vitro culture processes. This study was aimed at modeling and optimizing a new embryogenesis medium for chrysanthemum. Three individual data-driven models, including multi-layer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), and support vector regression (SVR), were developed for callogenesis rate (CR), embryogenesis rate (ER), and somatic embryo number (SEN). Consequently, the best obtained results were used in the fusion process by a bagging method. For medium reformulation, effects of eight ionic macronutrients on CR, ER, and SEN and effects of four vitamins on SEN were evaluated using data fusion (DF)–non-dominated sorting genetic algorithm-II (NSGA-II) and DF-genetic algorithm (GA), respectively. Results showed that DF models with the highest R2 had superb performance in comparison with all other individual models. According to DF-NSGAII, the highest ER and SEN can be obtained from the medium containing 14.27 mM NH4+, 38.92 mM NO3−, 22.79 mM K+, 5.08 mM Cl−, 3.34 mM Ca2+, 1.67 mM Mg2+, 2.17 mM SO42−, and 1.44 mM H2PO4−. Based on the DF-GA model, the maximum SEN can be obtained from a medium containing 0.61 μM thiamine, 5.93 μM nicotinic acid, 0.25 μM biotin, and 0.26 μM riboflavin. The efficiency of the established-optimized medium was experimentally compared to Murashige and Skoog medium (MS) for embryogenesis of five chrysanthemum cultivars, and results indicated the efficiency of optimized medium over MS medium.Key points• MLP, SVR, and ANFIS were fused by a bagging method to develop a data fusion model.• NSGA-II and GA were linked to the data fusion model for establishing and optimizing a new embryogenesis medium.• The new culture medium (HNT) had better efficiency than MS medium. More... »

PAGES

10249-10263

References to SciGraph publications

  • 2000-05. Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2017-10-07. Drought forecasting using data-driven methods and an evolutionary algorithm in MODELING EARTH SYSTEMS AND ENVIRONMENT
  • 2018-06-07. Development of a Hybrid Data Driven Model for Hydrological Estimation in WATER RESOURCES MANAGEMENT
  • 2018-06-26. Indirect Organogenesis through Seedling-Derived Leaf Segments of Ficus Religiosa - a Multipurpose Woody Medicinal Plant in JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY
  • 1996-06. Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz) in NATURE BIOTECHNOLOGY
  • 2016-05-19. Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach in WATER RESOURCES MANAGEMENT
  • 2017-12-14. Classification of water quality status based on minimum quality parameters: application of machine learning techniques in MODELING EARTH SYSTEMS AND ENVIRONMENT
  • 1986-04. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis in PLANTA
  • 2019-12-03. Modeling and Optimizing Medium Composition for Shoot Regeneration of Chrysanthemum via Radial Basis Function-Non-dominated Sorting Genetic Algorithm-II (RBF-NSGAII) in SCIENTIFIC REPORTS
  • 2003-06. Cold-enhanced somatic embryogenesis in cell suspension cultures of Astragalus adsurgens Pall.: relationship with exogenous calcium during cold pretreatment in PLANT GROWTH REGULATION
  • 2000-11. Regeneration of somatic embryos and roots from quince leaves cultured on media with different macroelement composition in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2012-10-21. Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2018-01-09. Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague) in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2010-04-20. Formulation of Nutrient Medium for In Vitro Somatic Embryo Induction in Plantago ovata Forsk in BIOLOGICAL TRACE ELEMENT RESEARCH
  • 2001-07. Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.) in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2019-11-18. Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation in PLANT METHODS
  • 2020-03-17. Optimal conjunctive use of aqua-agriculture reservoir and irrigation canal for paddy fields (case study: Tajan irrigation network, Iran) in PADDY AND WATER ENVIRONMENT
  • 2006-04-21. Effect of primary culture medium composition on high frequency somatic embryogenesis in different Coffea species in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2019-02-20. Use of multiple regression analysis and artificial neural networks to model the effect of nitrogen in the organogenesis of Pinus taeda L. in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2015-05-16. Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA) in WATER RESOURCES MANAGEMENT
  • 2012-07-04. Somatic embryogenesis and plant regeneration in chrysanthemum (Yuukou) in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2014-08-17. Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health in PHYTOCHEMISTRY REVIEWS
  • 2015-01-21. Monthly and seasonal drought forecasting using statistical neural networks in ENVIRONMENTAL EARTH SCIENCES
  • 2000-10. Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) in PLANT CELL REPORTS
  • 2020-09-28. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2008-06-05. Effect of MgSO4 and K2SO4 on somatic embryo differentiation in Theobroma cacao L. in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 1937-12. The rôle of vitamins in plant development in THE BOTANICAL REVIEW
  • 2004-09. INORGANIC NUTRIENT MANIPULATION FOR HIGHLY IMPROVED IN VITRO PLANT REGENERATION IN FINGER MILLET ELEUSINE CORACANA (L.) GAERTN. in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2018-06-04. Indirect somatic embryogenesis of Theobroma cacao L. in liquid medium and improvement of embryo-to-plantlet conversion rate in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 1992-10. Reduced nitrogen influences somatic embryo quality and plant regeneration from suspension cultures of orchardgrass in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 2018-04-17. An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa in JOURNAL OF FORESTRY RESEARCH
  • 2001-10. Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from leaves of chilli pepper in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2020-08-13. Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study in PLANT METHODS
  • 2014-02-26. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2012-08-17. A nutrient medium for diverse applications and tissue growth of plant species in vitro in IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT
  • 1981-01. Morphogenesis in callus tissue ofMedicago sativa: The role of ammonium ion in somatic embryogenesis in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2020-01-06. Analysis of macro nutrient related growth responses using multivariate adaptive regression splines in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 1991-04-01. Plant regeneration through somatic embryogenesis from spear callus culture of Asparagus cooperi Baker in PLANT CELL REPORTS
  • 1990-08. Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures in PLANT CELL REPORTS
  • 2017-02-02. Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2000-11. Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro in PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC)
  • 2008-12-16. The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis(L.) Osbeck) in BMC PLANT BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00253-020-10978-1

    DOI

    http://dx.doi.org/10.1007/s00253-020-10978-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1132152180

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33119796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chrysanthemum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Embryonic Development", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks, Computer", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada", 
                "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hesami", 
            "givenName": "Mohsen", 
            "id": "sg:person.010152317512.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152317512.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran", 
              "id": "http://www.grid.ac/institutes/grid.46072.37", 
              "name": [
                "Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naderi", 
            "givenName": "Roohangiz", 
            "id": "sg:person.01153604677.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153604677.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Biotechnology, Faculty of Sciences & Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.412502.0", 
              "name": [
                "Department of Plant Biotechnology, Faculty of Sciences & Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tohidfar", 
            "givenName": "Masoud", 
            "id": "sg:person.01126177703.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12665-015-4047-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038107522", 
              "https://doi.org/10.1007/s12665-015-4047-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-017-9877-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100272485", 
              "https://doi.org/10.1007/s11627-017-9877-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00232184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012766561", 
              "https://doi.org/10.1007/bf00232184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002990000225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049931768", 
              "https://doi.org/10.1007/s002990000225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-006-9094-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036896495", 
              "https://doi.org/10.1007/s11240-006-9094-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12892-018-0024-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105137322", 
              "https://doi.org/10.1007/s12892-018-0024-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006472418218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043984639", 
              "https://doi.org/10.1023/a:1006472418218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11676-018-0647-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103399790", 
              "https://doi.org/10.1007/s11676-018-0647-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02823315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013959881", 
              "https://doi.org/10.1007/bf02823315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-014-0444-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014384151", 
              "https://doi.org/10.1007/s11240-014-0444-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-019-0520-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122683488", 
              "https://doi.org/10.1186/s13007-019-0520-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02318910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009261121", 
              "https://doi.org/10.1007/bf02318910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-016-1152-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083531081", 
              "https://doi.org/10.1007/s11240-016-1152-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006407803660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042913463", 
              "https://doi.org/10.1023/a:1006407803660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40808-017-0385-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092125744", 
              "https://doi.org/10.1007/s40808-017-0385-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006482702094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022230549", 
              "https://doi.org/10.1023/a:1006482702094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-012-9452-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046004839", 
              "https://doi.org/10.1007/s11627-012-9452-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00235353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052083955", 
              "https://doi.org/10.1007/bf00235353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-015-1027-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037109119", 
              "https://doi.org/10.1007/s11269-015-1027-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00391223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407220", 
              "https://doi.org/10.1007/bf00391223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011610413177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008874404", 
              "https://doi.org/10.1023/a:1011610413177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1079/ivp2004564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045046280", 
              "https://doi.org/10.1079/ivp2004564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-012-0201-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026245179", 
              "https://doi.org/10.1007/s11240-012-0201-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-020-10888-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131229437", 
              "https://doi.org/10.1007/s00253-020-10888-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10333-020-00797-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125717066", 
              "https://doi.org/10.1007/s10333-020-00797-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-016-1358-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044209838", 
              "https://doi.org/10.1007/s11269-016-1358-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40808-017-0406-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099691446", 
              "https://doi.org/10.1007/s40808-017-0406-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-001-0079-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038856645", 
              "https://doi.org/10.1007/s11627-001-0079-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-012-0243-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042058282", 
              "https://doi.org/10.1007/s11240-012-0243-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0696-726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014548748", 
              "https://doi.org/10.1038/nbt0696-726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-54257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123087671", 
              "https://doi.org/10.1038/s41598-019-54257-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-008-9398-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003760198", 
              "https://doi.org/10.1007/s11240-008-9398-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12011-010-8684-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015757070", 
              "https://doi.org/10.1007/s12011-010-8684-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-020-00655-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130099291", 
              "https://doi.org/10.1186/s13007-020-00655-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11627-018-9909-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104379250", 
              "https://doi.org/10.1007/s11627-018-9909-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024295901808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013460857", 
              "https://doi.org/10.1023/a:1024295901808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11101-014-9375-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046427151", 
              "https://doi.org/10.1007/s11101-014-9375-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02872294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034707377", 
              "https://doi.org/10.1007/bf02872294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-019-01763-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123831336", 
              "https://doi.org/10.1007/s11240-019-01763-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11240-019-01581-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112262098", 
              "https://doi.org/10.1007/s11240-019-01581-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-018-2016-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104465763", 
              "https://doi.org/10.1007/s11269-018-2016-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-8-126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029667245", 
              "https://doi.org/10.1186/1471-2229-8-126"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-10-29", 
        "datePublishedReg": "2020-10-29", 
        "description": "Data-driven models in a combination of optimization algorithms could be beneficial methods for predicting and optimizing in vitro culture processes. This study was aimed at modeling and optimizing a new embryogenesis medium for chrysanthemum. Three individual data-driven models, including multi-layer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), and support vector regression (SVR), were developed for callogenesis rate (CR), embryogenesis rate (ER), and somatic embryo number (SEN). Consequently, the best obtained results were used in the fusion process by a bagging method. For medium reformulation, effects of eight ionic macronutrients on CR, ER, and SEN and effects of four vitamins on SEN were evaluated using data fusion (DF)\u2013non-dominated sorting genetic algorithm-II (NSGA-II) and DF-genetic algorithm (GA), respectively. Results showed that DF models with the highest R2 had superb performance in comparison with all other individual models. According to DF-NSGAII, the highest ER and SEN can be obtained from the medium containing 14.27\u00a0mM NH4+, 38.92\u00a0mM NO3\u2212, 22.79\u00a0mM\u00a0K+, 5.08\u00a0mM Cl\u2212, 3.34\u00a0mM Ca2+, 1.67\u00a0mM\u00a0Mg2+, 2.17\u00a0mM SO42\u2212, and 1.44\u00a0mM H2PO4\u2212. Based on the DF-GA model, the maximum SEN can be obtained from a medium containing 0.61\u00a0\u03bcM thiamine, 5.93\u00a0\u03bcM nicotinic acid, 0.25\u00a0\u03bcM biotin, and 0.26\u00a0\u03bcM riboflavin. The efficiency of the established-optimized medium was experimentally compared to Murashige and Skoog medium (MS) for embryogenesis of five chrysanthemum cultivars, and results indicated the efficiency of optimized medium over MS medium.Key points\u2022 MLP, SVR, and ANFIS were fused by a bagging method to develop a data fusion model.\u2022 NSGA-II and GA were linked to the data fusion model for establishing and optimizing a new embryogenesis medium.\u2022 The new culture medium (HNT) had better efficiency than MS medium.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00253-020-10978-1", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1083533", 
            "issn": [
              "0175-7598", 
              "1432-0614"
            ], 
            "name": "Applied Microbiology and Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "23", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "104"
          }
        ], 
        "keywords": [
          "multi-layer perceptron", 
          "adaptive neuro-fuzzy inference system", 
          "data fusion model", 
          "data-driven models", 
          "fusion model", 
          "bagging method", 
          "artificial intelligence methods", 
          "hybrid artificial intelligence method", 
          "neuro-fuzzy inference system", 
          "intelligence methods", 
          "data fusion", 
          "inference system", 
          "vector regression", 
          "genetic algorithm II", 
          "NSGA-II", 
          "high-throughput modeling", 
          "optimization algorithm", 
          "algorithm II", 
          "individual models", 
          "algorithm", 
          "fusion process", 
          "superb performance", 
          "highest embryogenesis rate", 
          "plant tissue culture process", 
          "better efficiency", 
          "perceptron", 
          "case study", 
          "model", 
          "modeling", 
          "DF model", 
          "efficiency", 
          "method", 
          "SVR", 
          "optimizing", 
          "fusion", 
          "performance", 
          "process", 
          "system", 
          "beneficial method", 
          "results", 
          "reformulation", 
          "highest R2", 
          "number", 
          "tissue culture process", 
          "medium", 
          "combination", 
          "regression", 
          "embryogenesis rate", 
          "comparison", 
          "rate", 
          "R2", 
          "establishment", 
          "study", 
          "gas", 
          "culture process", 
          "effect", 
          "new culture medium", 
          "chrysanthemum", 
          "mM", 
          "chrysanthemum cultivars", 
          "NH4", 
          "Mg2", 
          "cultivars", 
          "embryo number", 
          "macronutrients", 
          "vitamin", 
          "mM NH4", 
          "mM Ca2", 
          "Ca2", 
          "thiamine", 
          "nicotinic acid", 
          "acid", 
          "biotin", 
          "riboflavin", 
          "embryogenesis", 
          "culture medium", 
          "embryogenesis medium", 
          "somatic embryo number", 
          "\u03bcM biotin", 
          "Murashige", 
          "Skoog (MS) medium", 
          "MS medium"
        ], 
        "name": "Introducing a hybrid artificial intelligence method for high-throughput modeling and optimizing plant tissue culture processes: the establishment of a new embryogenesis medium for chrysanthemum, as a case study", 
        "pagination": "10249-10263", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1132152180"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00253-020-10978-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33119796"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00253-020-10978-1", 
          "https://app.dimensions.ai/details/publication/pub.1132152180"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_853.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00253-020-10978-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-020-10978-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-020-10978-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-020-10978-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-020-10978-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    349 TRIPLES      21 PREDICATES      154 URIs      104 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00253-020-10978-1 schema:about N0ef1786ea5204c0e95c4f0ccd889bfad
    2 N1cc85667b143422289d2baecfc865770
    3 N382137e57dd14492a03a9e9e5f8c4df8
    4 N97212a079f3d429caa6c6a16c7090394
    5 Nefa7a788b8e94dc4a140289eeed65007
    6 anzsrc-for:08
    7 anzsrc-for:0801
    8 schema:author Ncc820f8853f84ff8aa948f37507a09b1
    9 schema:citation sg:pub.10.1007/bf00232184
    10 sg:pub.10.1007/bf00235353
    11 sg:pub.10.1007/bf00391223
    12 sg:pub.10.1007/bf02318910
    13 sg:pub.10.1007/bf02823315
    14 sg:pub.10.1007/bf02872294
    15 sg:pub.10.1007/s00253-020-10888-2
    16 sg:pub.10.1007/s002990000225
    17 sg:pub.10.1007/s10333-020-00797-5
    18 sg:pub.10.1007/s11101-014-9375-z
    19 sg:pub.10.1007/s11240-006-9094-2
    20 sg:pub.10.1007/s11240-008-9398-5
    21 sg:pub.10.1007/s11240-012-0201-2
    22 sg:pub.10.1007/s11240-012-0243-5
    23 sg:pub.10.1007/s11240-014-0444-1
    24 sg:pub.10.1007/s11240-016-1152-9
    25 sg:pub.10.1007/s11240-019-01581-y
    26 sg:pub.10.1007/s11240-019-01763-8
    27 sg:pub.10.1007/s11269-015-1027-6
    28 sg:pub.10.1007/s11269-016-1358-y
    29 sg:pub.10.1007/s11269-018-2016-3
    30 sg:pub.10.1007/s11627-001-0079-x
    31 sg:pub.10.1007/s11627-012-9452-1
    32 sg:pub.10.1007/s11627-017-9877-7
    33 sg:pub.10.1007/s11627-018-9909-y
    34 sg:pub.10.1007/s11676-018-0647-0
    35 sg:pub.10.1007/s12011-010-8684-3
    36 sg:pub.10.1007/s12665-015-4047-x
    37 sg:pub.10.1007/s12892-018-0024-0
    38 sg:pub.10.1007/s40808-017-0385-x
    39 sg:pub.10.1007/s40808-017-0406-9
    40 sg:pub.10.1023/a:1006407803660
    41 sg:pub.10.1023/a:1006472418218
    42 sg:pub.10.1023/a:1006482702094
    43 sg:pub.10.1023/a:1011610413177
    44 sg:pub.10.1023/a:1024295901808
    45 sg:pub.10.1038/nbt0696-726
    46 sg:pub.10.1038/s41598-019-54257-0
    47 sg:pub.10.1079/ivp2004564
    48 sg:pub.10.1186/1471-2229-8-126
    49 sg:pub.10.1186/s13007-019-0520-y
    50 sg:pub.10.1186/s13007-020-00655-9
    51 schema:datePublished 2020-10-29
    52 schema:datePublishedReg 2020-10-29
    53 schema:description Data-driven models in a combination of optimization algorithms could be beneficial methods for predicting and optimizing in vitro culture processes. This study was aimed at modeling and optimizing a new embryogenesis medium for chrysanthemum. Three individual data-driven models, including multi-layer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), and support vector regression (SVR), were developed for callogenesis rate (CR), embryogenesis rate (ER), and somatic embryo number (SEN). Consequently, the best obtained results were used in the fusion process by a bagging method. For medium reformulation, effects of eight ionic macronutrients on CR, ER, and SEN and effects of four vitamins on SEN were evaluated using data fusion (DF)–non-dominated sorting genetic algorithm-II (NSGA-II) and DF-genetic algorithm (GA), respectively. Results showed that DF models with the highest R2 had superb performance in comparison with all other individual models. According to DF-NSGAII, the highest ER and SEN can be obtained from the medium containing 14.27 mM NH4+, 38.92 mM NO3−, 22.79 mM K+, 5.08 mM Cl−, 3.34 mM Ca2+, 1.67 mM Mg2+, 2.17 mM SO42−, and 1.44 mM H2PO4−. Based on the DF-GA model, the maximum SEN can be obtained from a medium containing 0.61 μM thiamine, 5.93 μM nicotinic acid, 0.25 μM biotin, and 0.26 μM riboflavin. The efficiency of the established-optimized medium was experimentally compared to Murashige and Skoog medium (MS) for embryogenesis of five chrysanthemum cultivars, and results indicated the efficiency of optimized medium over MS medium.Key points• MLP, SVR, and ANFIS were fused by a bagging method to develop a data fusion model.• NSGA-II and GA were linked to the data fusion model for establishing and optimizing a new embryogenesis medium.• The new culture medium (HNT) had better efficiency than MS medium.
    54 schema:genre article
    55 schema:isAccessibleForFree false
    56 schema:isPartOf N756448c392b149c1b510c708cf74b955
    57 Nc352e360b5004a9293889e07d2a03d93
    58 sg:journal.1083533
    59 schema:keywords Ca2
    60 DF model
    61 MS medium
    62 Mg2
    63 Murashige
    64 NH4
    65 NSGA-II
    66 R2
    67 SVR
    68 Skoog (MS) medium
    69 acid
    70 adaptive neuro-fuzzy inference system
    71 algorithm
    72 algorithm II
    73 artificial intelligence methods
    74 bagging method
    75 beneficial method
    76 better efficiency
    77 biotin
    78 case study
    79 chrysanthemum
    80 chrysanthemum cultivars
    81 combination
    82 comparison
    83 cultivars
    84 culture medium
    85 culture process
    86 data fusion
    87 data fusion model
    88 data-driven models
    89 effect
    90 efficiency
    91 embryo number
    92 embryogenesis
    93 embryogenesis medium
    94 embryogenesis rate
    95 establishment
    96 fusion
    97 fusion model
    98 fusion process
    99 gas
    100 genetic algorithm II
    101 high-throughput modeling
    102 highest R2
    103 highest embryogenesis rate
    104 hybrid artificial intelligence method
    105 individual models
    106 inference system
    107 intelligence methods
    108 mM
    109 mM Ca2
    110 mM NH4
    111 macronutrients
    112 medium
    113 method
    114 model
    115 modeling
    116 multi-layer perceptron
    117 neuro-fuzzy inference system
    118 new culture medium
    119 nicotinic acid
    120 number
    121 optimization algorithm
    122 optimizing
    123 perceptron
    124 performance
    125 plant tissue culture process
    126 process
    127 rate
    128 reformulation
    129 regression
    130 results
    131 riboflavin
    132 somatic embryo number
    133 study
    134 superb performance
    135 system
    136 thiamine
    137 tissue culture process
    138 vector regression
    139 vitamin
    140 μM biotin
    141 schema:name Introducing a hybrid artificial intelligence method for high-throughput modeling and optimizing plant tissue culture processes: the establishment of a new embryogenesis medium for chrysanthemum, as a case study
    142 schema:pagination 10249-10263
    143 schema:productId N35defcc1d2dc43349448dad7027fcedf
    144 Ne9bf37b783d64f35a8731e9402429d5a
    145 Neff32b4480dd459eb39bcc69ed07f14a
    146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132152180
    147 https://doi.org/10.1007/s00253-020-10978-1
    148 schema:sdDatePublished 2022-12-01T06:41
    149 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    150 schema:sdPublisher N2edd0cae50ef4a279673e962f8aad542
    151 schema:url https://doi.org/10.1007/s00253-020-10978-1
    152 sgo:license sg:explorer/license/
    153 sgo:sdDataset articles
    154 rdf:type schema:ScholarlyArticle
    155 N0ef1786ea5204c0e95c4f0ccd889bfad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Algorithms
    157 rdf:type schema:DefinedTerm
    158 N1cc85667b143422289d2baecfc865770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Chrysanthemum
    160 rdf:type schema:DefinedTerm
    161 N2edd0cae50ef4a279673e962f8aad542 schema:name Springer Nature - SN SciGraph project
    162 rdf:type schema:Organization
    163 N35defcc1d2dc43349448dad7027fcedf schema:name pubmed_id
    164 schema:value 33119796
    165 rdf:type schema:PropertyValue
    166 N382137e57dd14492a03a9e9e5f8c4df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Embryonic Development
    168 rdf:type schema:DefinedTerm
    169 N756448c392b149c1b510c708cf74b955 schema:volumeNumber 104
    170 rdf:type schema:PublicationVolume
    171 N8761314a633b4faca1041f12e3bf3b29 rdf:first sg:person.01126177703.58
    172 rdf:rest rdf:nil
    173 N891390db4d324bb18bc0908d63535f0e rdf:first sg:person.01153604677.50
    174 rdf:rest N8761314a633b4faca1041f12e3bf3b29
    175 N97212a079f3d429caa6c6a16c7090394 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Neural Networks, Computer
    177 rdf:type schema:DefinedTerm
    178 Nc352e360b5004a9293889e07d2a03d93 schema:issueNumber 23
    179 rdf:type schema:PublicationIssue
    180 Ncc820f8853f84ff8aa948f37507a09b1 rdf:first sg:person.010152317512.72
    181 rdf:rest N891390db4d324bb18bc0908d63535f0e
    182 Ne9bf37b783d64f35a8731e9402429d5a schema:name dimensions_id
    183 schema:value pub.1132152180
    184 rdf:type schema:PropertyValue
    185 Nefa7a788b8e94dc4a140289eeed65007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Artificial Intelligence
    187 rdf:type schema:DefinedTerm
    188 Neff32b4480dd459eb39bcc69ed07f14a schema:name doi
    189 schema:value 10.1007/s00253-020-10978-1
    190 rdf:type schema:PropertyValue
    191 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Information and Computing Sciences
    193 rdf:type schema:DefinedTerm
    194 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Artificial Intelligence and Image Processing
    196 rdf:type schema:DefinedTerm
    197 sg:journal.1083533 schema:issn 0175-7598
    198 1432-0614
    199 schema:name Applied Microbiology and Biotechnology
    200 schema:publisher Springer Nature
    201 rdf:type schema:Periodical
    202 sg:person.010152317512.72 schema:affiliation grid-institutes:grid.46072.37
    203 schema:familyName Hesami
    204 schema:givenName Mohsen
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152317512.72
    206 rdf:type schema:Person
    207 sg:person.01126177703.58 schema:affiliation grid-institutes:grid.412502.0
    208 schema:familyName Tohidfar
    209 schema:givenName Masoud
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126177703.58
    211 rdf:type schema:Person
    212 sg:person.01153604677.50 schema:affiliation grid-institutes:grid.46072.37
    213 schema:familyName Naderi
    214 schema:givenName Roohangiz
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153604677.50
    216 rdf:type schema:Person
    217 sg:pub.10.1007/bf00232184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012766561
    218 https://doi.org/10.1007/bf00232184
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/bf00235353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052083955
    221 https://doi.org/10.1007/bf00235353
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/bf00391223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407220
    224 https://doi.org/10.1007/bf00391223
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/bf02318910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009261121
    227 https://doi.org/10.1007/bf02318910
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/bf02823315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013959881
    230 https://doi.org/10.1007/bf02823315
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/bf02872294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034707377
    233 https://doi.org/10.1007/bf02872294
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00253-020-10888-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131229437
    236 https://doi.org/10.1007/s00253-020-10888-2
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s002990000225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049931768
    239 https://doi.org/10.1007/s002990000225
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s10333-020-00797-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125717066
    242 https://doi.org/10.1007/s10333-020-00797-5
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s11101-014-9375-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046427151
    245 https://doi.org/10.1007/s11101-014-9375-z
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s11240-006-9094-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036896495
    248 https://doi.org/10.1007/s11240-006-9094-2
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s11240-008-9398-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003760198
    251 https://doi.org/10.1007/s11240-008-9398-5
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s11240-012-0201-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026245179
    254 https://doi.org/10.1007/s11240-012-0201-2
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s11240-012-0243-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042058282
    257 https://doi.org/10.1007/s11240-012-0243-5
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s11240-014-0444-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014384151
    260 https://doi.org/10.1007/s11240-014-0444-1
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s11240-016-1152-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083531081
    263 https://doi.org/10.1007/s11240-016-1152-9
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s11240-019-01581-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112262098
    266 https://doi.org/10.1007/s11240-019-01581-y
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s11240-019-01763-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123831336
    269 https://doi.org/10.1007/s11240-019-01763-8
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s11269-015-1027-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037109119
    272 https://doi.org/10.1007/s11269-015-1027-6
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s11269-016-1358-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044209838
    275 https://doi.org/10.1007/s11269-016-1358-y
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s11269-018-2016-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104465763
    278 https://doi.org/10.1007/s11269-018-2016-3
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s11627-001-0079-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038856645
    281 https://doi.org/10.1007/s11627-001-0079-x
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s11627-012-9452-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004839
    284 https://doi.org/10.1007/s11627-012-9452-1
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s11627-017-9877-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100272485
    287 https://doi.org/10.1007/s11627-017-9877-7
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/s11627-018-9909-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104379250
    290 https://doi.org/10.1007/s11627-018-9909-y
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/s11676-018-0647-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103399790
    293 https://doi.org/10.1007/s11676-018-0647-0
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/s12011-010-8684-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015757070
    296 https://doi.org/10.1007/s12011-010-8684-3
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/s12665-015-4047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038107522
    299 https://doi.org/10.1007/s12665-015-4047-x
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/s12892-018-0024-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105137322
    302 https://doi.org/10.1007/s12892-018-0024-0
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/s40808-017-0385-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092125744
    305 https://doi.org/10.1007/s40808-017-0385-x
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1007/s40808-017-0406-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099691446
    308 https://doi.org/10.1007/s40808-017-0406-9
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1023/a:1006407803660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042913463
    311 https://doi.org/10.1023/a:1006407803660
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1023/a:1006472418218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043984639
    314 https://doi.org/10.1023/a:1006472418218
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1023/a:1006482702094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230549
    317 https://doi.org/10.1023/a:1006482702094
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1023/a:1011610413177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008874404
    320 https://doi.org/10.1023/a:1011610413177
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1023/a:1024295901808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460857
    323 https://doi.org/10.1023/a:1024295901808
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nbt0696-726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014548748
    326 https://doi.org/10.1038/nbt0696-726
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/s41598-019-54257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123087671
    329 https://doi.org/10.1038/s41598-019-54257-0
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1079/ivp2004564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045046280
    332 https://doi.org/10.1079/ivp2004564
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1186/1471-2229-8-126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029667245
    335 https://doi.org/10.1186/1471-2229-8-126
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1186/s13007-019-0520-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1122683488
    338 https://doi.org/10.1186/s13007-019-0520-y
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1186/s13007-020-00655-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130099291
    341 https://doi.org/10.1186/s13007-020-00655-9
    342 rdf:type schema:CreativeWork
    343 grid-institutes:grid.412502.0 schema:alternateName Department of Plant Biotechnology, Faculty of Sciences & Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
    344 schema:name Department of Plant Biotechnology, Faculty of Sciences & Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
    345 rdf:type schema:Organization
    346 grid-institutes:grid.46072.37 schema:alternateName Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
    347 schema:name Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
    348 Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
    349 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...