GeM-Pro: a tool for genome functional mining and microbial profiling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Mariano A. Torres Manno, María D. Pizarro, Marcos Prunello, Christian Magni, Lucas D. Daurelio, Martín Espariz

ABSTRACT

Gem-Pro is a new tool for gene mining and functional profiling of bacteria. It initially identifies homologous genes using BLAST and then applies three filtering steps to select orthologous gene pairs. The first one uses BLAST score values to identify trivial paralogs. The second filter uses the shared identity percentages of found trivial paralogs as internal witnesses of non-orthology to set orthology cutoff values. The third filtering step uses conditional probabilities of orthology and non-orthology to define new cutoffs and generate supportive information of orthology assignations. Additionally, a subsidiary tool, called q-GeM, was also developed to mine traits of interest using logistic regression (LR) or linear discriminant analysis (LDA) classifiers. q-GeM is more efficient in the use of computing resources than Gem-Pro but needs an initial classified set of homologous genes in order to train LR and LDA classifiers. Hence, q-GeM could be used to analyze new set of strains with available genome sequences, without the need to rerun a complete Gem-Pro analysis. Finally, Gem-Pro and q-GeM perform a synteny analysis to evaluate the integrity and genomic arrangement of specific pathways of interest to infer their presence. The tools were applied to more than 2 million homologous pairs encoded by Bacillus strains generating statistical supported predictions of trait contents. The different patterns of encoded traits of interest were successfully used to perform a descriptive bacterial profiling. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-019-09648-8

DOI

http://dx.doi.org/10.1007/s00253-019-09648-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111949165

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30729287


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Laboratorio de Biotecnolog\u00eda e Inocuidad de los Alimentos, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina", 
            "Laboratorio de Gen\u00e9tica y Fisiolog\u00eda de Bacterias L\u00e1cticas, Instituto de Biolog\u00eda Molecular y Celular de Rosario (IBR - CONICET), sede FCByF \u2013 UNR, Rosario, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres Manno", 
        "givenName": "Mariano A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Laboratorio de Investigaciones en Fisiolog\u00eda y Biolog\u00eda Molecular Vegetal (LIFiBVe), C\u00e1tedra de Fisiolog\u00eda Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina", 
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas (CONICET), Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pizarro", 
        "givenName": "Mar\u00eda D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Rosario", 
          "id": "https://www.grid.ac/institutes/grid.10814.3c", 
          "name": [
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas (CONICET), Buenos Aires, Argentina", 
            "\u00c1rea Estad\u00edstica y Procesamiento de Datos, Departamento de Matem\u00e1tica y Estad\u00edstica, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prunello", 
        "givenName": "Marcos", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Laboratorio de Biotecnolog\u00eda e Inocuidad de los Alimentos, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina", 
            "Laboratorio de Gen\u00e9tica y Fisiolog\u00eda de Bacterias L\u00e1cticas, Instituto de Biolog\u00eda Molecular y Celular de Rosario (IBR - CONICET), sede FCByF \u2013 UNR, Rosario, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magni", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Rosario", 
          "id": "https://www.grid.ac/institutes/grid.10814.3c", 
          "name": [
            "Laboratorio de Investigaciones en Fisiolog\u00eda y Biolog\u00eda Molecular Vegetal (LIFiBVe), C\u00e1tedra de Fisiolog\u00eda Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina", 
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas (CONICET), Buenos Aires, Argentina", 
            "\u00c1rea Estad\u00edstica y Procesamiento de Datos, Departamento de Matem\u00e1tica y Estad\u00edstica, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daurelio", 
        "givenName": "Lucas D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Laboratorio de Biotecnolog\u00eda e Inocuidad de los Alimentos, Facultad de Ciencias Bioqu\u00edmicas y Farmac\u00e9uticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina", 
            "Laboratorio de Gen\u00e9tica y Fisiolog\u00eda de Bacterias L\u00e1cticas, Instituto de Biolog\u00eda Molecular y Celular de Rosario (IBR - CONICET), sede FCByF \u2013 UNR, Rosario, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Espariz", 
        "givenName": "Mart\u00edn", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.1224503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000505228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000848409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001716337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005269052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0163098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006457878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007683223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.4.1084-1096.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009369066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-013-5247-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009862553", 
          "https://doi.org/10.1007/s00253-013-5247-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009987680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csbj.2015.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010928632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbr030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011377102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0730845100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014349444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-8-interactions1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014476201", 
          "https://doi.org/10.1186/gb-2001-2-8-interactions1002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-005-0289-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014617528", 
          "https://doi.org/10.1007/s00239-005-0289-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-005-0289-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014617528", 
          "https://doi.org/10.1007/s00239-005-0289-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015207402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2015.00780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016123301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00784-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016497415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01368-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017704622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018348474", 
          "https://doi.org/10.1038/nbt1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evw005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018451781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701472164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019116948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021531193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02605-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021624721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022051989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.01474-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022314463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022688043", 
          "https://doi.org/10.1186/1471-2105-8-294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023222463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023469671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-582-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023979622", 
          "https://doi.org/10.1007/978-1-61779-582-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026423599", 
          "https://doi.org/10.1186/1471-2105-11-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.073585.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029032167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029163077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029964928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000142891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030609902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0068818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030706518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2009.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034168835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2008.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037309010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039465480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039646901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2008.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039726919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039979416", 
          "https://doi.org/10.1186/1471-2105-12-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040558615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040779948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2008.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042741900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044216575", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044216575", 
          "https://doi.org/10.1007/978-1-4614-7138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044216575", 
          "https://doi.org/10.1007/978-1-4614-7138-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002390010184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045143895", 
          "https://doi.org/10.1007/s002390010184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1005182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046249822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.5197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046271071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mpp.12209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048506837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-014-6251-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051189339", 
          "https://doi.org/10.1007/s00253-014-6251-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052265679", 
          "https://doi.org/10.1038/srep12975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2017.00022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054068398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/np070070k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056230725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/np070070k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056230725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-03-15-0066-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060077503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijsem.0.000760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060388782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijsem.0.001755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060389760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.083576-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060395872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbx020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083930616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btx229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085320664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01075-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090861285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2017.01438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090953159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijsem.0.002404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092186222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fgene.2017.00165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092472253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0202893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106468475"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Gem-Pro is a new tool for gene mining and functional profiling of bacteria. It initially identifies homologous genes using BLAST and then applies three filtering steps to select orthologous gene pairs. The first one uses BLAST score values to identify trivial paralogs. The second filter uses the shared identity percentages of found trivial paralogs as internal witnesses of non-orthology to set orthology cutoff values. The third filtering step uses conditional probabilities of orthology and non-orthology to define new cutoffs and generate supportive information of orthology assignations. Additionally, a subsidiary tool, called q-GeM, was also developed to mine traits of interest using logistic regression (LR) or linear discriminant analysis (LDA) classifiers. q-GeM is more efficient in the use of computing resources than Gem-Pro but needs an initial classified set of homologous genes in order to train LR and LDA classifiers. Hence, q-GeM could be used to analyze new set of strains with available genome sequences, without the need to rerun a complete Gem-Pro analysis. Finally, Gem-Pro and q-GeM perform a synteny analysis to evaluate the integrity and genomic arrangement of specific pathways of interest to infer their presence. The tools were applied to more than 2 million homologous pairs encoded by Bacillus strains generating statistical supported predictions of trait contents. The different patterns of encoded traits of interest were successfully used to perform a descriptive bacterial profiling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00253-019-09648-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "103"
      }
    ], 
    "name": "GeM-Pro: a tool for genome functional mining and microbial profiling", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d5eac45597edcb89df242153215e5a55350653464dfb7de5e28e6f9942ec5202"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30729287"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406612"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-019-09648-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111949165"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-019-09648-8", 
      "https://app.dimensions.ai/details/publication/pub.1111949165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00253-019-09648-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-019-09648-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-019-09648-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-019-09648-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-019-09648-8'


 

This table displays all metadata directly associated to this object as RDF triples.

315 TRIPLES      21 PREDICATES      95 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-019-09648-8 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ne8ed6a4e60bc41cbb496c0aad447178f
4 schema:citation sg:pub.10.1007/978-1-4614-7138-7
5 sg:pub.10.1007/978-1-61779-582-4_9
6 sg:pub.10.1007/s00239-005-0289-7
7 sg:pub.10.1007/s002390010184
8 sg:pub.10.1007/s00253-013-5247-5
9 sg:pub.10.1007/s00253-014-6251-0
10 sg:pub.10.1038/nbt1325
11 sg:pub.10.1038/srep12975
12 sg:pub.10.1186/1471-2105-11-119
13 sg:pub.10.1186/1471-2105-12-11
14 sg:pub.10.1186/1471-2105-8-294
15 sg:pub.10.1186/gb-2001-2-8-interactions1002
16 https://app.dimensions.ai/details/publication/pub.1044216575
17 https://doi.org/10.1006/jmbi.2000.5197
18 https://doi.org/10.1016/j.csbj.2015.03.003
19 https://doi.org/10.1016/j.jbiotec.2008.10.011
20 https://doi.org/10.1016/j.jbiotec.2008.10.015
21 https://doi.org/10.1016/j.tig.2008.08.009
22 https://doi.org/10.1016/j.tig.2009.03.004
23 https://doi.org/10.1021/np070070k
24 https://doi.org/10.1073/pnas.0730845100
25 https://doi.org/10.1073/pnas.96.6.2896
26 https://doi.org/10.1080/10635150701472164
27 https://doi.org/10.1093/bib/bbr030
28 https://doi.org/10.1093/bib/bbx020
29 https://doi.org/10.1093/bioinformatics/btl117
30 https://doi.org/10.1093/bioinformatics/btm404
31 https://doi.org/10.1093/bioinformatics/btr039
32 https://doi.org/10.1093/bioinformatics/btu033
33 https://doi.org/10.1093/bioinformatics/btx229
34 https://doi.org/10.1093/gbe/evw005
35 https://doi.org/10.1093/nar/gkl433
36 https://doi.org/10.1093/nar/gkn201
37 https://doi.org/10.1093/nar/gkq930
38 https://doi.org/10.1093/nar/gkq953
39 https://doi.org/10.1093/nar/gkr201
40 https://doi.org/10.1093/nar/gks1118
41 https://doi.org/10.1093/nar/gkt1055
42 https://doi.org/10.1093/nar/gkt1253
43 https://doi.org/10.1094/mpmi-03-15-0066-r
44 https://doi.org/10.1099/ijsem.0.000760
45 https://doi.org/10.1099/ijsem.0.001755
46 https://doi.org/10.1099/ijsem.0.002404
47 https://doi.org/10.1099/mic.0.083576-0
48 https://doi.org/10.1101/gr.073585.107
49 https://doi.org/10.1101/gr.1224503
50 https://doi.org/10.1111/mpp.12209
51 https://doi.org/10.1126/science.278.5338.631
52 https://doi.org/10.1128/aem.01075-17
53 https://doi.org/10.1128/aem.02605-14
54 https://doi.org/10.1128/genomea.01368-14
55 https://doi.org/10.1128/jb.00784-10
56 https://doi.org/10.1128/jb.01474-14
57 https://doi.org/10.1128/jb.186.4.1084-1096.2004
58 https://doi.org/10.1159/000142891
59 https://doi.org/10.1371/journal.pcbi.1000262
60 https://doi.org/10.1371/journal.pcbi.1000703
61 https://doi.org/10.1371/journal.pcbi.1005182
62 https://doi.org/10.1371/journal.pone.0068818
63 https://doi.org/10.1371/journal.pone.0163098
64 https://doi.org/10.1371/journal.pone.0202893
65 https://doi.org/10.3389/fgene.2017.00165
66 https://doi.org/10.3389/fmicb.2015.00780
67 https://doi.org/10.3389/fmicb.2017.00022
68 https://doi.org/10.3389/fmicb.2017.01438
69 https://doi.org/10.7717/peerj.1660
70 schema:datePublished 2019-04
71 schema:datePublishedReg 2019-04-01
72 schema:description Gem-Pro is a new tool for gene mining and functional profiling of bacteria. It initially identifies homologous genes using BLAST and then applies three filtering steps to select orthologous gene pairs. The first one uses BLAST score values to identify trivial paralogs. The second filter uses the shared identity percentages of found trivial paralogs as internal witnesses of non-orthology to set orthology cutoff values. The third filtering step uses conditional probabilities of orthology and non-orthology to define new cutoffs and generate supportive information of orthology assignations. Additionally, a subsidiary tool, called q-GeM, was also developed to mine traits of interest using logistic regression (LR) or linear discriminant analysis (LDA) classifiers. q-GeM is more efficient in the use of computing resources than Gem-Pro but needs an initial classified set of homologous genes in order to train LR and LDA classifiers. Hence, q-GeM could be used to analyze new set of strains with available genome sequences, without the need to rerun a complete Gem-Pro analysis. Finally, Gem-Pro and q-GeM perform a synteny analysis to evaluate the integrity and genomic arrangement of specific pathways of interest to infer their presence. The tools were applied to more than 2 million homologous pairs encoded by Bacillus strains generating statistical supported predictions of trait contents. The different patterns of encoded traits of interest were successfully used to perform a descriptive bacterial profiling.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree false
76 schema:isPartOf N2055c8d0f9ed48a9b4f373b826652c6b
77 N5d3a5ec8cfd54cd08c3fca8f92758523
78 sg:journal.1083533
79 schema:name GeM-Pro: a tool for genome functional mining and microbial profiling
80 schema:pagination 1-12
81 schema:productId N15c18c1504ce45e0b94362d8d16cf73f
82 N93fe57dfdf69483f874c8a3ad92d1b39
83 N94b72c1bf1ad4d379a4680062c29be11
84 Naf504c76d76a4a9ca7e19618f51ea278
85 Nd2e021f2bc8348cd93979f7976f1b586
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949165
87 https://doi.org/10.1007/s00253-019-09648-8
88 schema:sdDatePublished 2019-04-11T13:55
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N1a03b65bff9a4c16ba7af5d32c9a6256
91 schema:url https://link.springer.com/10.1007%2Fs00253-019-09648-8
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0a93c1e21b6c405aa0d13f0c8e9d5b88 rdf:first N9bb033a898464685934ddf81918d5a0c
96 rdf:rest N7df69f8262d1494380e5626cf98672ca
97 N15c18c1504ce45e0b94362d8d16cf73f schema:name doi
98 schema:value 10.1007/s00253-019-09648-8
99 rdf:type schema:PropertyValue
100 N1a03b65bff9a4c16ba7af5d32c9a6256 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N2055c8d0f9ed48a9b4f373b826652c6b schema:issueNumber 7
103 rdf:type schema:PublicationIssue
104 N3aee64ecaedf4947a05348f863e58cf6 rdf:first Nafe3e08d1c3945188e870aa02c41eaf2
105 rdf:rest Nf979fc8a312e46d9964177a634debd27
106 N3e0424c0e05044a58ded3b1ecc72a93a schema:affiliation https://www.grid.ac/institutes/grid.423606.5
107 schema:familyName Torres Manno
108 schema:givenName Mariano A.
109 rdf:type schema:Person
110 N5d3a5ec8cfd54cd08c3fca8f92758523 schema:volumeNumber 103
111 rdf:type schema:PublicationVolume
112 N5f6c96ee550d4ab1b2852866c2d15d2a rdf:first Neeeeec4b84a54d59980dfa7eefb5c70c
113 rdf:rest rdf:nil
114 N7df69f8262d1494380e5626cf98672ca rdf:first Ndf0f75eca3ed4a199933035324224329
115 rdf:rest N3aee64ecaedf4947a05348f863e58cf6
116 N93fe57dfdf69483f874c8a3ad92d1b39 schema:name pubmed_id
117 schema:value 30729287
118 rdf:type schema:PropertyValue
119 N94b72c1bf1ad4d379a4680062c29be11 schema:name dimensions_id
120 schema:value pub.1111949165
121 rdf:type schema:PropertyValue
122 N9bb033a898464685934ddf81918d5a0c schema:affiliation https://www.grid.ac/institutes/grid.423606.5
123 schema:familyName Pizarro
124 schema:givenName María D.
125 rdf:type schema:Person
126 N9c1e19bfa8de4f8db468e851e00379e2 schema:affiliation https://www.grid.ac/institutes/grid.10814.3c
127 schema:familyName Daurelio
128 schema:givenName Lucas D.
129 rdf:type schema:Person
130 Naf504c76d76a4a9ca7e19618f51ea278 schema:name nlm_unique_id
131 schema:value 8406612
132 rdf:type schema:PropertyValue
133 Nafe3e08d1c3945188e870aa02c41eaf2 schema:affiliation https://www.grid.ac/institutes/grid.423606.5
134 schema:familyName Magni
135 schema:givenName Christian
136 rdf:type schema:Person
137 Nd2e021f2bc8348cd93979f7976f1b586 schema:name readcube_id
138 schema:value d5eac45597edcb89df242153215e5a55350653464dfb7de5e28e6f9942ec5202
139 rdf:type schema:PropertyValue
140 Ndf0f75eca3ed4a199933035324224329 schema:affiliation https://www.grid.ac/institutes/grid.10814.3c
141 schema:familyName Prunello
142 schema:givenName Marcos
143 rdf:type schema:Person
144 Ne8ed6a4e60bc41cbb496c0aad447178f rdf:first N3e0424c0e05044a58ded3b1ecc72a93a
145 rdf:rest N0a93c1e21b6c405aa0d13f0c8e9d5b88
146 Neeeeec4b84a54d59980dfa7eefb5c70c schema:affiliation https://www.grid.ac/institutes/grid.423606.5
147 schema:familyName Espariz
148 schema:givenName Martín
149 rdf:type schema:Person
150 Nf979fc8a312e46d9964177a634debd27 rdf:first N9c1e19bfa8de4f8db468e851e00379e2
151 rdf:rest N5f6c96ee550d4ab1b2852866c2d15d2a
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
156 schema:name Genetics
157 rdf:type schema:DefinedTerm
158 sg:journal.1083533 schema:issn 0175-7598
159 1432-0614
160 schema:name Applied Microbiology and Biotechnology
161 rdf:type schema:Periodical
162 sg:pub.10.1007/978-1-4614-7138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044216575
163 https://doi.org/10.1007/978-1-4614-7138-7
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-1-61779-582-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023979622
166 https://doi.org/10.1007/978-1-61779-582-4_9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00239-005-0289-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014617528
169 https://doi.org/10.1007/s00239-005-0289-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s002390010184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045143895
172 https://doi.org/10.1007/s002390010184
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00253-013-5247-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009862553
175 https://doi.org/10.1007/s00253-013-5247-5
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00253-014-6251-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051189339
178 https://doi.org/10.1007/s00253-014-6251-0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nbt1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018348474
181 https://doi.org/10.1038/nbt1325
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/srep12975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052265679
184 https://doi.org/10.1038/srep12975
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
187 https://doi.org/10.1186/1471-2105-11-119
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/1471-2105-12-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039979416
190 https://doi.org/10.1186/1471-2105-12-11
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1471-2105-8-294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688043
193 https://doi.org/10.1186/1471-2105-8-294
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/gb-2001-2-8-interactions1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014476201
196 https://doi.org/10.1186/gb-2001-2-8-interactions1002
197 rdf:type schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1044216575 schema:CreativeWork
199 https://doi.org/10.1006/jmbi.2000.5197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046271071
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.csbj.2015.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010928632
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jbiotec.2008.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039726919
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jbiotec.2008.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037309010
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.tig.2008.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042741900
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.tig.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034168835
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/np070070k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056230725
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.0730845100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014349444
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.96.6.2896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469671
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1080/10635150701472164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019116948
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/bib/bbr030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011377102
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/bib/bbx020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083930616
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bioinformatics/btl117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040779948
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/bioinformatics/btm404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683223
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/bioinformatics/btr039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021531193
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/bioinformatics/btu033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000848409
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/bioinformatics/btx229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085320664
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/gbe/evw005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018451781
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/nar/gkl433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001716337
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/nar/gkn201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030609902
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkq930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222463
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/gkq953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009987680
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/nar/gkr201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022051989
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/gks1118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029964928
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/gkt1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029163077
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/gkt1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040558615
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1094/mpmi-03-15-0066-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1060077503
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1099/ijsem.0.000760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060388782
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1099/ijsem.0.001755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060389760
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1099/ijsem.0.002404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092186222
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1099/mic.0.083576-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060395872
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1101/gr.073585.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029032167
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1101/gr.1224503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000505228
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/mpp.12209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048506837
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1126/science.278.5338.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039646901
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1128/aem.01075-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090861285
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1128/aem.02605-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021624721
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1128/genomea.01368-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017704622
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1128/jb.00784-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016497415
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1128/jb.01474-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022314463
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1128/jb.186.4.1084-1096.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009369066
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1159/000142891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477256
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1371/journal.pcbi.1000262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005269052
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1371/journal.pcbi.1000703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039465480
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1371/journal.pcbi.1005182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046249822
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1371/journal.pone.0068818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030706518
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1371/journal.pone.0163098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006457878
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1371/journal.pone.0202893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106468475
294 rdf:type schema:CreativeWork
295 https://doi.org/10.3389/fgene.2017.00165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092472253
296 rdf:type schema:CreativeWork
297 https://doi.org/10.3389/fmicb.2015.00780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016123301
298 rdf:type schema:CreativeWork
299 https://doi.org/10.3389/fmicb.2017.00022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054068398
300 rdf:type schema:CreativeWork
301 https://doi.org/10.3389/fmicb.2017.01438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090953159
302 rdf:type schema:CreativeWork
303 https://doi.org/10.7717/peerj.1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015207402
304 rdf:type schema:CreativeWork
305 https://www.grid.ac/institutes/grid.10814.3c schema:alternateName National University of Rosario
306 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
307 Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
308 Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
309 rdf:type schema:Organization
310 https://www.grid.ac/institutes/grid.423606.5 schema:alternateName National Scientific and Technical Research Council
311 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
312 Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
313 Laboratorio de Genética y Fisiología de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF – UNR, Rosario, Santa Fe, Argentina
314 Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
315 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...