Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of Escherichia coli via antitoxin HipB View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-07

AUTHORS

Mengya Wang, Kuili Fang, Sung Min Choi Hong, Inwha Kim, Ik-Soon Jang, Seok Hoon Hong

ABSTRACT

Persisters represent a small bacterial population that is dormant and that survives under antibiotic treatment without experiencing genetic adaptation. Persisters are also considered one of the major reasons for recalcitrant chronic bacterial infections. Although several mechanisms of persister formation have been proposed, it is not clear how cells enter the dormant state in the presence of antibiotics or how persister cell formation can be effectively controlled. A fatty acid compound, cis-2-decenoic acid, was reported to decrease persister formation as well as revert the dormant cells to a metabolically active state. We reasoned that some fatty acid compounds may be effective in controlling bacterial persistence because they are known to benefit host immune systems. This study investigated persister cell formation by pathogens that were exposed to nine fatty acid compounds during antibiotic treatment. We found that three medium chain unsaturated fatty acid ethyl esters (ethyl trans-2-decenoate, ethyl trans-2-octenoate, and ethyl cis-4-decenoate) decreased the level of Escherichia coli persister formation up to 110-fold when cells were exposed to ciprofloxacin or ampicillin antibiotics. RNA sequencing analysis and gene deletion persister studies elucidated that these fatty acids inhibit bacterial persistence by regulating antitoxin HipB. A similar persister cell reduction was observed for pathogenic E. coli EDL933, Pseudomonas aeruginosa PAO1, and Serratia marcescens ICU2-4 strains. This study demonstrates that fatty acid ethyl esters can be used to disrupt bacterial dormancy to combat persistent infectious diseases. More... »

PAGES

8511-8524

References to SciGraph publications

  • 2009-04. Principles of c-di-GMP signalling in bacteria in NATURE REVIEWS MICROBIOLOGY
  • 2012-09-02. A Novel Type V TA System Where mRNA for Toxin GhoT is Cleaved by Antitoxin GhoS in NATURE CHEMICAL BIOLOGY
  • 2008-03. Physiological heterogeneity in biofilms in NATURE REVIEWS MICROBIOLOGY
  • 2016-04-18. Persister formation in Staphylococcus aureus is associated with ATP depletion in NATURE MICROBIOLOGY
  • 2008. Multidrug Tolerance of Biofilms and Persister Cells in BACTERIAL BIOFILMS
  • 2001-01. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 in NATURE
  • 2010-09. Functional roles for noise in genetic circuits in NATURE
  • 2006-12-04. Persister cells, dormancy and infectious disease in NATURE REVIEWS MICROBIOLOGY
  • 2015-07-29. HipBA–promoter structures reveal the basis of heritable multidrug tolerance in NATURE
  • 2016-04-06. Growth resumption from stationary phase reveals memory in Escherichia coli cultures in SCIENTIFIC REPORTS
  • 2010-12-21. Cryptic prophages help bacteria cope with adverse environments in NATURE COMMUNICATIONS
  • 2004-02. Bacterial biofilms: from the Natural environment to infectious diseases in NATURE REVIEWS MICROBIOLOGY
  • 2000-08. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen in NATURE
  • 2011-04-24. Antitoxin MqsA Helps Mediate the Bacterial General Stress Response in NATURE CHEMICAL BIOLOGY
  • 2005-05. Prokaryotic toxin–antitoxin stress response loci in NATURE REVIEWS MICROBIOLOGY
  • 2013-11-13. Activated ClpP kills persisters and eradicates a chronic biofilm infection in NATURE
  • 2010-05-04. How antibiotics kill bacteria: from targets to networks in NATURE REVIEWS MICROBIOLOGY
  • 2009-05-21. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2011-05-11. Metabolite-Enabled Eradication of Bacterial Persisters by Aminoglycosides in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00253-018-9271-3

    DOI

    http://dx.doi.org/10.1007/s00253-018-9271-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106051179

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30088019


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antitoxins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ciprofloxacin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Esters", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fatty Acids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pseudomonas aeruginosa", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Serratia marcescens", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.62813.3e", 
              "name": [
                "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Mengya", 
            "id": "sg:person.012070015610.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070015610.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.62813.3e", 
              "name": [
                "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fang", 
            "givenName": "Kuili", 
            "id": "sg:person.016461735664.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461735664.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.62813.3e", 
              "name": [
                "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Sung Min Choi", 
            "id": "sg:person.015055717610.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015055717610.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.62813.3e", 
              "name": [
                "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Inwha", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Bioconvergence Analysis, Korea Basic Science Institute, 305-333, Daejeon, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.410885.0", 
              "name": [
                "Division of Bioconvergence Analysis, Korea Basic Science Institute, 305-333, Daejeon, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jang", 
            "givenName": "Ik-Soon", 
            "id": "sg:person.01317070447.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317070447.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.62813.3e", 
              "name": [
                "Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Seok Hoon", 
            "id": "sg:person.01121662231.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121662231.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep24055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023557185", 
              "https://doi.org/10.1038/srep24055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036204007", 
              "https://doi.org/10.1038/ismej.2009.59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026288009", 
              "https://doi.org/10.1038/nrmicro1838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033068239", 
              "https://doi.org/10.1038/ncomms1146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014788729", 
              "https://doi.org/10.1038/nrmicro2333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034055556", 
              "https://doi.org/10.1038/nrmicro1147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14662", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036395855", 
              "https://doi.org/10.1038/nature14662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020385479", 
              "https://doi.org/10.1038/35054089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050633398", 
              "https://doi.org/10.1038/nrmicro2109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035237070", 
              "https://doi.org/10.1038/35023079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021849910", 
              "https://doi.org/10.1038/nature10069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002916547", 
              "https://doi.org/10.1038/nmicrobiol.2016.51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018195007", 
              "https://doi.org/10.1038/nature12790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006717915", 
              "https://doi.org/10.1038/nature09326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75418-3_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047337753", 
              "https://doi.org/10.1007/978-3-540-75418-3_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047272649", 
              "https://doi.org/10.1038/nchembio.1062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039651347", 
              "https://doi.org/10.1038/nrmicro821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043954333", 
              "https://doi.org/10.1038/nchembio.560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028266555", 
              "https://doi.org/10.1038/nrmicro1557"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-07", 
        "datePublishedReg": "2018-08-07", 
        "description": "Persisters represent a small bacterial population that is dormant and that survives under antibiotic treatment without experiencing genetic adaptation. Persisters are also considered one of the major reasons for recalcitrant chronic bacterial infections. Although several mechanisms of persister formation have been proposed, it is not clear how cells enter the dormant state in the presence of antibiotics or how persister cell formation can be effectively controlled. A fatty acid compound, cis-2-decenoic acid, was reported to decrease persister formation as well as revert the dormant cells to a metabolically active state. We reasoned that some fatty acid compounds may be effective in controlling bacterial persistence because they are known to benefit host immune systems. This study investigated persister cell formation by pathogens that were exposed to nine fatty acid compounds during antibiotic treatment. We found that three medium chain unsaturated fatty acid ethyl esters (ethyl trans-2-decenoate, ethyl trans-2-octenoate, and ethyl cis-4-decenoate) decreased the level of Escherichia coli persister formation up to 110-fold when cells were exposed to ciprofloxacin or ampicillin antibiotics. RNA sequencing analysis and gene deletion persister studies elucidated that these fatty acids inhibit bacterial persistence by regulating antitoxin HipB. A similar persister cell reduction was observed for pathogenic E. coli EDL933, Pseudomonas aeruginosa PAO1, and Serratia marcescens ICU2-4 strains. This study demonstrates that fatty acid ethyl esters can be used to disrupt bacterial dormancy to combat persistent infectious diseases.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00253-018-9271-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1083533", 
            "issn": [
              "0175-7598", 
              "1432-0614"
            ], 
            "name": "Applied Microbiology and Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "19", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "keywords": [
          "persister cell formation", 
          "persister formation", 
          "cell formation", 
          "RNA sequencing analysis", 
          "bacterial persistence", 
          "Pseudomonas aeruginosa PAO1", 
          "medium chain", 
          "antibiotic treatment", 
          "small bacterial population", 
          "genetic adaptation", 
          "fatty acid compounds", 
          "cis-2-decenoic acid", 
          "bacterial populations", 
          "aeruginosa PAO1", 
          "Escherichia coli", 
          "coli EDL933", 
          "chronic bacterial infection", 
          "sequencing analysis", 
          "bacterial dormancy", 
          "dormant cells", 
          "presence of antibiotics", 
          "host immune system", 
          "fatty acid ethyl esters", 
          "dormant state", 
          "persistent infectious diseases", 
          "active state", 
          "bacterial infections", 
          "immune system", 
          "fatty acids", 
          "infectious diseases", 
          "cell reduction", 
          "cells", 
          "persisters", 
          "acid ethyl ester", 
          "ampicillin antibiotics", 
          "icu2", 
          "acid compounds", 
          "EDL933", 
          "HipB", 
          "dormancy", 
          "antibiotics", 
          "treatment", 
          "PAO1", 
          "coli", 
          "ethyl ester", 
          "pathogens", 
          "acid", 
          "formation", 
          "persistence", 
          "infection", 
          "disease", 
          "study", 
          "major reason", 
          "ciprofloxacin", 
          "adaptation", 
          "strains", 
          "chain", 
          "esters", 
          "mechanism", 
          "compounds", 
          "population", 
          "revert", 
          "levels", 
          "reduction", 
          "presence", 
          "analysis", 
          "reasons", 
          "state", 
          "system", 
          "recalcitrant chronic bacterial infections", 
          "Escherichia coli persister formation", 
          "coli persister formation", 
          "gene deletion persister studies", 
          "deletion persister studies", 
          "persister studies", 
          "antitoxin HipB.", 
          "HipB.", 
          "similar persister cell reduction", 
          "persister cell reduction", 
          "Serratia marcescens ICU2", 
          "antitoxin HipB"
        ], 
        "name": "Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of Escherichia coli via antitoxin HipB", 
        "pagination": "8511-8524", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106051179"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00253-018-9271-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30088019"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00253-018-9271-3", 
          "https://app.dimensions.ai/details/publication/pub.1106051179"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_786.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00253-018-9271-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-9271-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-9271-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-9271-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-9271-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    308 TRIPLES      22 PREDICATES      139 URIs      110 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00253-018-9271-3 schema:about N18a136b8f1c04391a16d08c16f0ef87a
    2 N2c975e97190e449994935c594689d460
    3 N6672ff8751f84c15abfb59e955924fd9
    4 N7a743a31748c4b50bbd0b73c8c32c086
    5 N9221cccca07f4b038981dd5b319ec52f
    6 N9e008b4ec36c4b1e94b7ff8a83196429
    7 Nc36cdd20cc4444f59c011e253482b255
    8 Ndf4d43fb1c52478b9e1c60881cebd592
    9 Ne3572fbd709b4dfda37d4ad85aa971d1
    10 Ne8fbea3bf02845a9bc1c4d83b31f46a9
    11 Nfab9773523a74c1aa0c2dd84a46b2f2a
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 anzsrc-for:11
    15 anzsrc-for:1108
    16 schema:author N4051f476ebb74eff912e41c5dccfd764
    17 schema:citation sg:pub.10.1007/978-3-540-75418-3_6
    18 sg:pub.10.1038/35023079
    19 sg:pub.10.1038/35054089
    20 sg:pub.10.1038/ismej.2009.59
    21 sg:pub.10.1038/nature09326
    22 sg:pub.10.1038/nature10069
    23 sg:pub.10.1038/nature12790
    24 sg:pub.10.1038/nature14662
    25 sg:pub.10.1038/nchembio.1062
    26 sg:pub.10.1038/nchembio.560
    27 sg:pub.10.1038/ncomms1146
    28 sg:pub.10.1038/nmicrobiol.2016.51
    29 sg:pub.10.1038/nrmicro1147
    30 sg:pub.10.1038/nrmicro1557
    31 sg:pub.10.1038/nrmicro1838
    32 sg:pub.10.1038/nrmicro2109
    33 sg:pub.10.1038/nrmicro2333
    34 sg:pub.10.1038/nrmicro821
    35 sg:pub.10.1038/srep24055
    36 schema:datePublished 2018-08-07
    37 schema:datePublishedReg 2018-08-07
    38 schema:description Persisters represent a small bacterial population that is dormant and that survives under antibiotic treatment without experiencing genetic adaptation. Persisters are also considered one of the major reasons for recalcitrant chronic bacterial infections. Although several mechanisms of persister formation have been proposed, it is not clear how cells enter the dormant state in the presence of antibiotics or how persister cell formation can be effectively controlled. A fatty acid compound, cis-2-decenoic acid, was reported to decrease persister formation as well as revert the dormant cells to a metabolically active state. We reasoned that some fatty acid compounds may be effective in controlling bacterial persistence because they are known to benefit host immune systems. This study investigated persister cell formation by pathogens that were exposed to nine fatty acid compounds during antibiotic treatment. We found that three medium chain unsaturated fatty acid ethyl esters (ethyl trans-2-decenoate, ethyl trans-2-octenoate, and ethyl cis-4-decenoate) decreased the level of Escherichia coli persister formation up to 110-fold when cells were exposed to ciprofloxacin or ampicillin antibiotics. RNA sequencing analysis and gene deletion persister studies elucidated that these fatty acids inhibit bacterial persistence by regulating antitoxin HipB. A similar persister cell reduction was observed for pathogenic E. coli EDL933, Pseudomonas aeruginosa PAO1, and Serratia marcescens ICU2-4 strains. This study demonstrates that fatty acid ethyl esters can be used to disrupt bacterial dormancy to combat persistent infectious diseases.
    39 schema:genre article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N63547ef61da54d81bbdc96e53e4fbce6
    43 Nd6ea66a108b741b0a561a4d58fd0a834
    44 sg:journal.1083533
    45 schema:keywords EDL933
    46 Escherichia coli
    47 Escherichia coli persister formation
    48 HipB
    49 HipB.
    50 PAO1
    51 Pseudomonas aeruginosa PAO1
    52 RNA sequencing analysis
    53 Serratia marcescens ICU2
    54 acid
    55 acid compounds
    56 acid ethyl ester
    57 active state
    58 adaptation
    59 aeruginosa PAO1
    60 ampicillin antibiotics
    61 analysis
    62 antibiotic treatment
    63 antibiotics
    64 antitoxin HipB
    65 antitoxin HipB.
    66 bacterial dormancy
    67 bacterial infections
    68 bacterial persistence
    69 bacterial populations
    70 cell formation
    71 cell reduction
    72 cells
    73 chain
    74 chronic bacterial infection
    75 ciprofloxacin
    76 cis-2-decenoic acid
    77 coli
    78 coli EDL933
    79 coli persister formation
    80 compounds
    81 deletion persister studies
    82 disease
    83 dormancy
    84 dormant cells
    85 dormant state
    86 esters
    87 ethyl ester
    88 fatty acid compounds
    89 fatty acid ethyl esters
    90 fatty acids
    91 formation
    92 gene deletion persister studies
    93 genetic adaptation
    94 host immune system
    95 icu2
    96 immune system
    97 infection
    98 infectious diseases
    99 levels
    100 major reason
    101 mechanism
    102 medium chain
    103 pathogens
    104 persistence
    105 persistent infectious diseases
    106 persister cell formation
    107 persister cell reduction
    108 persister formation
    109 persister studies
    110 persisters
    111 population
    112 presence
    113 presence of antibiotics
    114 reasons
    115 recalcitrant chronic bacterial infections
    116 reduction
    117 revert
    118 sequencing analysis
    119 similar persister cell reduction
    120 small bacterial population
    121 state
    122 strains
    123 study
    124 system
    125 treatment
    126 schema:name Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of Escherichia coli via antitoxin HipB
    127 schema:pagination 8511-8524
    128 schema:productId N6289b3a580a549deafd800bc56bf900f
    129 N65f968e66f934aac99bf497b12cb149e
    130 Na8447fdd9cf34ef2b2ba02b0e6fb9c3f
    131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106051179
    132 https://doi.org/10.1007/s00253-018-9271-3
    133 schema:sdDatePublished 2022-01-01T18:46
    134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    135 schema:sdPublisher Ne62565e1b22447449b9b96457a6c8b5c
    136 schema:url https://doi.org/10.1007/s00253-018-9271-3
    137 sgo:license sg:explorer/license/
    138 sgo:sdDataset articles
    139 rdf:type schema:ScholarlyArticle
    140 N10d35e1c8b6946c39d9ea31da01164ac rdf:first Nf56813f087c844fc9f1b90826f8d0f67
    141 rdf:rest N94469b7502084df78e1184e168fcf64c
    142 N18a136b8f1c04391a16d08c16f0ef87a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Anti-Bacterial Agents
    144 rdf:type schema:DefinedTerm
    145 N1f10a433331142379929d1ae34fe3c19 rdf:first sg:person.015055717610.66
    146 rdf:rest N10d35e1c8b6946c39d9ea31da01164ac
    147 N2c975e97190e449994935c594689d460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Serratia marcescens
    149 rdf:type schema:DefinedTerm
    150 N4051f476ebb74eff912e41c5dccfd764 rdf:first sg:person.012070015610.66
    151 rdf:rest Ne3d2f34695b7497e94373db871e5343a
    152 N6289b3a580a549deafd800bc56bf900f schema:name dimensions_id
    153 schema:value pub.1106051179
    154 rdf:type schema:PropertyValue
    155 N63547ef61da54d81bbdc96e53e4fbce6 schema:issueNumber 19
    156 rdf:type schema:PublicationIssue
    157 N65f968e66f934aac99bf497b12cb149e schema:name pubmed_id
    158 schema:value 30088019
    159 rdf:type schema:PropertyValue
    160 N6672ff8751f84c15abfb59e955924fd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Escherichia coli Proteins
    162 rdf:type schema:DefinedTerm
    163 N7a743a31748c4b50bbd0b73c8c32c086 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Esters
    165 rdf:type schema:DefinedTerm
    166 N84e3ec05af7d47e39ee50a323b40fe16 rdf:first sg:person.01121662231.27
    167 rdf:rest rdf:nil
    168 N9221cccca07f4b038981dd5b319ec52f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Antitoxins
    170 rdf:type schema:DefinedTerm
    171 N94469b7502084df78e1184e168fcf64c rdf:first sg:person.01317070447.13
    172 rdf:rest N84e3ec05af7d47e39ee50a323b40fe16
    173 N9e008b4ec36c4b1e94b7ff8a83196429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Fatty Acids
    175 rdf:type schema:DefinedTerm
    176 Na8447fdd9cf34ef2b2ba02b0e6fb9c3f schema:name doi
    177 schema:value 10.1007/s00253-018-9271-3
    178 rdf:type schema:PropertyValue
    179 Nc36cdd20cc4444f59c011e253482b255 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Ciprofloxacin
    181 rdf:type schema:DefinedTerm
    182 Nd6ea66a108b741b0a561a4d58fd0a834 schema:volumeNumber 102
    183 rdf:type schema:PublicationVolume
    184 Ndf4d43fb1c52478b9e1c60881cebd592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Pseudomonas aeruginosa
    186 rdf:type schema:DefinedTerm
    187 Ne3572fbd709b4dfda37d4ad85aa971d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Bacterial Infections
    189 rdf:type schema:DefinedTerm
    190 Ne3d2f34695b7497e94373db871e5343a rdf:first sg:person.016461735664.28
    191 rdf:rest N1f10a433331142379929d1ae34fe3c19
    192 Ne62565e1b22447449b9b96457a6c8b5c schema:name Springer Nature - SN SciGraph project
    193 rdf:type schema:Organization
    194 Ne8fbea3bf02845a9bc1c4d83b31f46a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name DNA-Binding Proteins
    196 rdf:type schema:DefinedTerm
    197 Nf56813f087c844fc9f1b90826f8d0f67 schema:affiliation grid-institutes:grid.62813.3e
    198 schema:familyName Kim
    199 schema:givenName Inwha
    200 rdf:type schema:Person
    201 Nfab9773523a74c1aa0c2dd84a46b2f2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Escherichia coli
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Biological Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Biochemistry and Cell Biology
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Medical and Health Sciences
    212 rdf:type schema:DefinedTerm
    213 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    214 schema:name Medical Microbiology
    215 rdf:type schema:DefinedTerm
    216 sg:journal.1083533 schema:issn 0175-7598
    217 1432-0614
    218 schema:name Applied Microbiology and Biotechnology
    219 schema:publisher Springer Nature
    220 rdf:type schema:Periodical
    221 sg:person.01121662231.27 schema:affiliation grid-institutes:grid.62813.3e
    222 schema:familyName Hong
    223 schema:givenName Seok Hoon
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121662231.27
    225 rdf:type schema:Person
    226 sg:person.012070015610.66 schema:affiliation grid-institutes:grid.62813.3e
    227 schema:familyName Wang
    228 schema:givenName Mengya
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070015610.66
    230 rdf:type schema:Person
    231 sg:person.01317070447.13 schema:affiliation grid-institutes:grid.410885.0
    232 schema:familyName Jang
    233 schema:givenName Ik-Soon
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317070447.13
    235 rdf:type schema:Person
    236 sg:person.015055717610.66 schema:affiliation grid-institutes:grid.62813.3e
    237 schema:familyName Hong
    238 schema:givenName Sung Min Choi
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015055717610.66
    240 rdf:type schema:Person
    241 sg:person.016461735664.28 schema:affiliation grid-institutes:grid.62813.3e
    242 schema:familyName Fang
    243 schema:givenName Kuili
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016461735664.28
    245 rdf:type schema:Person
    246 sg:pub.10.1007/978-3-540-75418-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047337753
    247 https://doi.org/10.1007/978-3-540-75418-3_6
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/35023079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035237070
    250 https://doi.org/10.1038/35023079
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/35054089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020385479
    253 https://doi.org/10.1038/35054089
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ismej.2009.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036204007
    256 https://doi.org/10.1038/ismej.2009.59
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nature09326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006717915
    259 https://doi.org/10.1038/nature09326
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nature10069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849910
    262 https://doi.org/10.1038/nature10069
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nature12790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018195007
    265 https://doi.org/10.1038/nature12790
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nature14662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036395855
    268 https://doi.org/10.1038/nature14662
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nchembio.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047272649
    271 https://doi.org/10.1038/nchembio.1062
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nchembio.560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043954333
    274 https://doi.org/10.1038/nchembio.560
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/ncomms1146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033068239
    277 https://doi.org/10.1038/ncomms1146
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nmicrobiol.2016.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002916547
    280 https://doi.org/10.1038/nmicrobiol.2016.51
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nrmicro1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034055556
    283 https://doi.org/10.1038/nrmicro1147
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nrmicro1557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028266555
    286 https://doi.org/10.1038/nrmicro1557
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nrmicro1838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026288009
    289 https://doi.org/10.1038/nrmicro1838
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nrmicro2109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050633398
    292 https://doi.org/10.1038/nrmicro2109
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nrmicro2333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014788729
    295 https://doi.org/10.1038/nrmicro2333
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nrmicro821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039651347
    298 https://doi.org/10.1038/nrmicro821
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/srep24055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023557185
    301 https://doi.org/10.1038/srep24055
    302 rdf:type schema:CreativeWork
    303 grid-institutes:grid.410885.0 schema:alternateName Division of Bioconvergence Analysis, Korea Basic Science Institute, 305-333, Daejeon, Republic of Korea
    304 schema:name Division of Bioconvergence Analysis, Korea Basic Science Institute, 305-333, Daejeon, Republic of Korea
    305 rdf:type schema:Organization
    306 grid-institutes:grid.62813.3e schema:alternateName Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA
    307 schema:name Department of Chemical and Biological Engineering, Illinois Institute of Technology, 60616, Chicago, IL, USA
    308 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...