Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Rodolfo Palomo-Briones, Eric Trably, Nguyen Esmeralda López-Lozano, Lourdes B. Celis, Hugo Oscar Méndez-Acosta, Nicolas Bernet, Elías Razo-Flores

ABSTRACT

The hydrogen (H2) production efficiency in dark fermentation systems is strongly dependent on the occurrence of metabolic pathways derived from the selection of microbial species that either consume molecular H2 or outcompete hydrogenogenic bacteria for the organic substrate. In this study, the effect of organic loading rate (OLR) on the H2 production performance, the metabolic pathways, and the microbial community composition in a continuous system was evaluated. Two bacterial genera, Clostridium and Streptococcus, were dominant in the microbial community depending on the OLR applied. At low OLR (14.7-44.1 gLactose/L-d), Clostridium sp. was dominant and directed the system towards the acetate-butyrate fermentation pathway, with a maximum H2 yield of 2.14 molH2/molHexose obtained at 29.4 gLactose/L-d. Under such conditions, the volumetric hydrogen production rate (VHPR) was between 3.2 and 11.6 LH2/L-d. In contrast, relatively high OLR (58.8 and 88.2 gLactose/L-d) favored the dominance of Streptococcus sp. as co-dominant microorganism leading to lactate production. Under these conditions, the formate production was also stimulated serving as a strategy to dispose the surplus of reduced molecules (e.g., NADH2+), which theoretically consumed up to 5.72 LH2/L-d. In such scenario, the VHPR was enhanced (13.7-14.5 LH2/L-d) but the H2 yield dropped to a minimum of 0.74 molH2/molHexose at OLR = 58.8 gLactose/L-d. Overall, this research brings clear evidence of the intrinsic occurrence of metabolic pathways detrimental for biohydrogen production, i.e., lactic acid fermentation and formate production, suggesting the use of low OLR as a strategy to control them. More... »

PAGES

2465-2475

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-018-8737-7

DOI

http://dx.doi.org/10.1007/s00253-018-8737-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100403408

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29335876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acetates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biofuels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Butyrates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clostridium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptococcus", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Scientific and Technological Research", 
          "id": "https://www.grid.ac/institutes/grid.419262.a", 
          "name": [
            "Divisi\u00f3n de Ciencias Ambientales, Instituto Potosino de Investigaci\u00f3n Cient\u00edfica y Tecnol\u00f3gica, Camino a la Presa San Jos\u00e9 2055, Lomas 4a Secci\u00f3n, 78216, San Luis Potos\u00ed, SLP, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palomo-Briones", 
        "givenName": "Rodolfo", 
        "id": "sg:person.016415615201.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016415615201.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Biotechnologie de l'Environnement", 
          "id": "https://www.grid.ac/institutes/grid.419083.7", 
          "name": [
            "LBE, INRA, Universit\u00e9 Montpellier, 102 avenue des Etangs, 11100, Narbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trably", 
        "givenName": "Eric", 
        "id": "sg:person.0701067475.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701067475.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Scientific and Technological Research", 
          "id": "https://www.grid.ac/institutes/grid.419262.a", 
          "name": [
            "Divisi\u00f3n de Ciencias Ambientales, Instituto Potosino de Investigaci\u00f3n Cient\u00edfica y Tecnol\u00f3gica, Camino a la Presa San Jos\u00e9 2055, Lomas 4a Secci\u00f3n, 78216, San Luis Potos\u00ed, SLP, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Lozano", 
        "givenName": "Nguyen Esmeralda", 
        "id": "sg:person.01051547053.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051547053.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Scientific and Technological Research", 
          "id": "https://www.grid.ac/institutes/grid.419262.a", 
          "name": [
            "Divisi\u00f3n de Ciencias Ambientales, Instituto Potosino de Investigaci\u00f3n Cient\u00edfica y Tecnol\u00f3gica, Camino a la Presa San Jos\u00e9 2055, Lomas 4a Secci\u00f3n, 78216, San Luis Potos\u00ed, SLP, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Celis", 
        "givenName": "Lourdes B.", 
        "id": "sg:person.0726057705.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726057705.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Guadalajara", 
          "id": "https://www.grid.ac/institutes/grid.412890.6", 
          "name": [
            "Departamento de Ingenier\u00eda Qu\u00edmica, CUCEI-Universidad de Guadalajara, Blvd. M. Garc\u00eda Barrag\u00e1n 1451, 44430, Guadalajara, JAL, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e9ndez-Acosta", 
        "givenName": "Hugo Oscar", 
        "id": "sg:person.01065127502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065127502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Biotechnologie de l'Environnement", 
          "id": "https://www.grid.ac/institutes/grid.419083.7", 
          "name": [
            "LBE, INRA, Universit\u00e9 Montpellier, 102 avenue des Etangs, 11100, Narbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernet", 
        "givenName": "Nicolas", 
        "id": "sg:person.01301633755.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301633755.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Scientific and Technological Research", 
          "id": "https://www.grid.ac/institutes/grid.419262.a", 
          "name": [
            "Divisi\u00f3n de Ciencias Ambientales, Instituto Potosino de Investigaci\u00f3n Cient\u00edfica y Tecnol\u00f3gica, Camino a la Presa San Jos\u00e9 2055, Lomas 4a Secci\u00f3n, 78216, San Luis Potos\u00ed, SLP, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Razo-Flores", 
        "givenName": "El\u00edas", 
        "id": "sg:person.01354743175.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354743175.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/genomea.01356-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002646769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2009.02.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002734001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2009.08.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004007511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0013033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004874031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-703x(02)00171-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006703751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-703x(02)00171-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006703751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008748358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1004716107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008950811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2008.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010528554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2008.06.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012387495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013175803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015934276", 
          "https://doi.org/10.1186/1752-0509-5-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2010.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016854397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.06.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018912213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3199(02)00120-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021924738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro3365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022673681", 
          "https://doi.org/10.1038/nrmicro3365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00871640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024725975", 
          "https://doi.org/10.1007/bf00871640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.183.16.4823-4838.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025210625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0080692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025400770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025904619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026648814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026648814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026648814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026648814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-016-7325-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028335333", 
          "https://doi.org/10.1007/s00253-016-7325-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.01310-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031554373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-004-1644-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032909681", 
          "https://doi.org/10.1007/s00253-004-1644-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2011.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034761947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10643380802000974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034989178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2013.07.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035766737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2014.07.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039428234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2014.01.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040203614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.11.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041326092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.00743-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041360246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005483609065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041847124", 
          "https://doi.org/10.1023/a:1005483609065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp000022p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041851858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/genomea.00790-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042191209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.1512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050972420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2013.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051388413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052852820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60111a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055031436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/femsre/fuw043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059581080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2011.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069145004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.04.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085179930"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "The hydrogen (H2) production efficiency in dark fermentation systems is strongly dependent on the occurrence of metabolic pathways derived from the selection of microbial species that either consume molecular H2 or outcompete hydrogenogenic bacteria for the organic substrate. In this study, the effect of organic loading rate (OLR) on the H2 production performance, the metabolic pathways, and the microbial community composition in a continuous system was evaluated. Two bacterial genera, Clostridium and Streptococcus, were dominant in the microbial community depending on the OLR applied. At low OLR (14.7-44.1\u00a0gLactose/L-d), Clostridium sp. was dominant and directed the system towards the acetate-butyrate fermentation pathway, with a maximum H2 yield of 2.14\u00a0molH2/molHexose obtained at 29.4\u00a0gLactose/L-d. Under such conditions, the volumetric hydrogen production rate (VHPR) was between 3.2 and 11.6\u00a0LH2/L-d. In contrast, relatively high OLR (58.8 and 88.2 gLactose/L-d) favored the dominance of Streptococcus sp. as co-dominant microorganism leading to lactate production. Under these conditions, the formate production was also stimulated serving as a strategy to dispose the surplus of reduced molecules (e.g., NADH2+), which theoretically consumed up to 5.72 LH2/L-d. In such scenario, the VHPR was enhanced (13.7-14.5 LH2/L-d) but the H2 yield dropped to a minimum of 0.74\u00a0molH2/molHexose at OLR\u2009=\u200958.8\u00a0gLactose/L-d. Overall, this research brings clear evidence of the intrinsic occurrence of metabolic pathways detrimental for biohydrogen production, i.e., lactic acid fermentation and formate production, suggesting the use of low OLR as a strategy to control them.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00253-018-8737-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "name": "Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor", 
    "pagination": "2465-2475", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3120329ddceb53d0ba7d16f2fb80c22ab82b15604125a97b555c45e84608a8da"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29335876"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406612"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-018-8737-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100403408"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-018-8737-7", 
      "https://app.dimensions.ai/details/publication/pub.1100403408"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00253-018-8737-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-8737-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-8737-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-8737-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-018-8737-7'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      80 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-018-8737-7 schema:about N1752411d849a4c1994d398189693d7b1
2 N46073ff1afd9482f8fe4491e55fec203
3 N477cff15a5d9476cbdd5a2dad883019d
4 Nb194232888354ff68bc3dae170aee5c7
5 Nd2622db255c740e7a244262192a67222
6 Ne2b0c789fd0d416aa333f942c2b2de09
7 Ne3a5d60b8610485a8f6a630c23a88805
8 Nf65afa9b66804b3d8973fa8d277f670a
9 Nfb4e304c063242fa9fac80f6f0584e8a
10 anzsrc-for:06
11 anzsrc-for:0605
12 schema:author Nbb0694a16c40455f9b6067db9a8c952a
13 schema:citation sg:pub.10.1007/bf00871640
14 sg:pub.10.1007/s00253-004-1644-0
15 sg:pub.10.1007/s00253-016-7325-y
16 sg:pub.10.1023/a:1005483609065
17 sg:pub.10.1038/nmeth.f.303
18 sg:pub.10.1038/nrmicro3365
19 sg:pub.10.1186/1752-0509-5-130
20 https://doi.org/10.1002/bit.22010
21 https://doi.org/10.1002/jctb.1512
22 https://doi.org/10.1016/j.apenergy.2017.04.051
23 https://doi.org/10.1016/j.biombioe.2014.01.050
24 https://doi.org/10.1016/j.biortech.2010.09.004
25 https://doi.org/10.1016/j.copbio.2011.10.008
26 https://doi.org/10.1016/j.ijhydene.2008.06.065
27 https://doi.org/10.1016/j.ijhydene.2009.02.063
28 https://doi.org/10.1016/j.ijhydene.2009.08.072
29 https://doi.org/10.1016/j.ijhydene.2010.06.010
30 https://doi.org/10.1016/j.ijhydene.2013.07.122
31 https://doi.org/10.1016/j.ijhydene.2014.07.143
32 https://doi.org/10.1016/j.ijhydene.2015.04.035
33 https://doi.org/10.1016/j.ijhydene.2015.06.077
34 https://doi.org/10.1016/j.ijhydene.2015.11.186
35 https://doi.org/10.1016/j.rser.2013.11.022
36 https://doi.org/10.1016/j.tibtech.2010.11.006
37 https://doi.org/10.1016/j.watres.2008.09.015
38 https://doi.org/10.1016/s0360-3199(02)00120-9
39 https://doi.org/10.1016/s1369-703x(02)00171-7
40 https://doi.org/10.1021/ac60111a017
41 https://doi.org/10.1021/bp000022p
42 https://doi.org/10.1073/pnas.1004716107
43 https://doi.org/10.1080/10643380802000974
44 https://doi.org/10.1093/bioinformatics/btq461
45 https://doi.org/10.1093/bioinformatics/btr381
46 https://doi.org/10.1093/femsre/fuw043
47 https://doi.org/10.1128/genomea.00790-14
48 https://doi.org/10.1128/genomea.01310-14
49 https://doi.org/10.1128/genomea.01356-14
50 https://doi.org/10.1128/jb.183.16.4823-4838.2001
51 https://doi.org/10.1128/mbio.00743-16
52 https://doi.org/10.1371/journal.pone.0013033
53 https://doi.org/10.1371/journal.pone.0080692
54 https://doi.org/10.2166/wst.2011.631
55 schema:datePublished 2018-03
56 schema:datePublishedReg 2018-03-01
57 schema:description The hydrogen (H<sub>2</sub>) production efficiency in dark fermentation systems is strongly dependent on the occurrence of metabolic pathways derived from the selection of microbial species that either consume molecular H<sub>2</sub> or outcompete hydrogenogenic bacteria for the organic substrate. In this study, the effect of organic loading rate (OLR) on the H<sub>2</sub> production performance, the metabolic pathways, and the microbial community composition in a continuous system was evaluated. Two bacterial genera, Clostridium and Streptococcus, were dominant in the microbial community depending on the OLR applied. At low OLR (14.7-44.1 g<sub>Lactose</sub>/L-d), Clostridium sp. was dominant and directed the system towards the acetate-butyrate fermentation pathway, with a maximum H<sub>2</sub> yield of 2.14 mol<sub>H2</sub>/mol<sub>Hexose</sub> obtained at 29.4 g<sub>Lactose</sub>/L-d. Under such conditions, the volumetric hydrogen production rate (VHPR) was between 3.2 and 11.6 L<sub>H2</sub>/L-d. In contrast, relatively high OLR (58.8 and 88.2 g<sub>Lactose</sub>/L-d) favored the dominance of Streptococcus sp. as co-dominant microorganism leading to lactate production. Under these conditions, the formate production was also stimulated serving as a strategy to dispose the surplus of reduced molecules (e.g., NADH<sub>2</sub><sup>+</sup>), which theoretically consumed up to 5.72 L<sub>H2</sub>/L-d. In such scenario, the VHPR was enhanced (13.7-14.5 L<sub>H2</sub>/L-d) but the H<sub>2</sub> yield dropped to a minimum of 0.74 mol<sub>H2</sub>/mol<sub>Hexose</sub> at OLR = 58.8 g<sub>Lactose</sub>/L-d. Overall, this research brings clear evidence of the intrinsic occurrence of metabolic pathways detrimental for biohydrogen production, i.e., lactic acid fermentation and formate production, suggesting the use of low OLR as a strategy to control them.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N7e6af00ab351414ba1d2e8249406ca2f
62 N91fdae98866f410eb230fac42d1d83cb
63 sg:journal.1083533
64 schema:name Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor
65 schema:pagination 2465-2475
66 schema:productId N2ce715784fd348d39f6de02a0ec80ece
67 N5dfeb6a72bbc4a86abb25fb99350431d
68 N7bcbda608d834d4e8c69c7afc1cfb7b0
69 Nc36b93ea8ca84ac58c4a88ac2534a9a8
70 Neb82274570624f409f3cb3819cba87aa
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403408
72 https://doi.org/10.1007/s00253-018-8737-7
73 schema:sdDatePublished 2019-04-10T15:14
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nc69de6b39d2d4694ac0e76cf064905fc
76 schema:url http://link.springer.com/10.1007/s00253-018-8737-7
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N1752411d849a4c1994d398189693d7b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Clostridium
82 rdf:type schema:DefinedTerm
83 N261f3c39dcd9429a93a80b0168d9436f rdf:first sg:person.01065127502.31
84 rdf:rest Ndf0656ddd5054ab7960c8235cac7e429
85 N2ce715784fd348d39f6de02a0ec80ece schema:name readcube_id
86 schema:value 3120329ddceb53d0ba7d16f2fb80c22ab82b15604125a97b555c45e84608a8da
87 rdf:type schema:PropertyValue
88 N46073ff1afd9482f8fe4491e55fec203 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Butyrates
90 rdf:type schema:DefinedTerm
91 N477cff15a5d9476cbdd5a2dad883019d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Bioreactors
93 rdf:type schema:DefinedTerm
94 N5dfeb6a72bbc4a86abb25fb99350431d schema:name pubmed_id
95 schema:value 29335876
96 rdf:type schema:PropertyValue
97 N7bcbda608d834d4e8c69c7afc1cfb7b0 schema:name dimensions_id
98 schema:value pub.1100403408
99 rdf:type schema:PropertyValue
100 N7e6af00ab351414ba1d2e8249406ca2f schema:volumeNumber 102
101 rdf:type schema:PublicationVolume
102 N91fdae98866f410eb230fac42d1d83cb schema:issueNumber 5
103 rdf:type schema:PublicationIssue
104 Nb194232888354ff68bc3dae170aee5c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Biofuels
106 rdf:type schema:DefinedTerm
107 Nb821c7175cb64b6fa8c2152d59657dca rdf:first sg:person.01051547053.26
108 rdf:rest Nf6142214c2c24195ade352aa3f275389
109 Nbb0694a16c40455f9b6067db9a8c952a rdf:first sg:person.016415615201.05
110 rdf:rest Nc368ba8600c3474db35850e08ad6b75e
111 Nc368ba8600c3474db35850e08ad6b75e rdf:first sg:person.0701067475.23
112 rdf:rest Nb821c7175cb64b6fa8c2152d59657dca
113 Nc36b93ea8ca84ac58c4a88ac2534a9a8 schema:name doi
114 schema:value 10.1007/s00253-018-8737-7
115 rdf:type schema:PropertyValue
116 Nc69de6b39d2d4694ac0e76cf064905fc schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nd2622db255c740e7a244262192a67222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Lactic Acid
120 rdf:type schema:DefinedTerm
121 Ndf0656ddd5054ab7960c8235cac7e429 rdf:first sg:person.01301633755.74
122 rdf:rest Nfc594261a81a4bb0800d187563962143
123 Ne2b0c789fd0d416aa333f942c2b2de09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Acetates
125 rdf:type schema:DefinedTerm
126 Ne3a5d60b8610485a8f6a630c23a88805 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Hydrogen
128 rdf:type schema:DefinedTerm
129 Neb82274570624f409f3cb3819cba87aa schema:name nlm_unique_id
130 schema:value 8406612
131 rdf:type schema:PropertyValue
132 Nf6142214c2c24195ade352aa3f275389 rdf:first sg:person.0726057705.93
133 rdf:rest N261f3c39dcd9429a93a80b0168d9436f
134 Nf65afa9b66804b3d8973fa8d277f670a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Streptococcus
136 rdf:type schema:DefinedTerm
137 Nfb4e304c063242fa9fac80f6f0584e8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Fermentation
139 rdf:type schema:DefinedTerm
140 Nfc594261a81a4bb0800d187563962143 rdf:first sg:person.01354743175.72
141 rdf:rest rdf:nil
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
146 schema:name Microbiology
147 rdf:type schema:DefinedTerm
148 sg:journal.1083533 schema:issn 0175-7598
149 1432-0614
150 schema:name Applied Microbiology and Biotechnology
151 rdf:type schema:Periodical
152 sg:person.01051547053.26 schema:affiliation https://www.grid.ac/institutes/grid.419262.a
153 schema:familyName López-Lozano
154 schema:givenName Nguyen Esmeralda
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051547053.26
156 rdf:type schema:Person
157 sg:person.01065127502.31 schema:affiliation https://www.grid.ac/institutes/grid.412890.6
158 schema:familyName Méndez-Acosta
159 schema:givenName Hugo Oscar
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065127502.31
161 rdf:type schema:Person
162 sg:person.01301633755.74 schema:affiliation https://www.grid.ac/institutes/grid.419083.7
163 schema:familyName Bernet
164 schema:givenName Nicolas
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301633755.74
166 rdf:type schema:Person
167 sg:person.01354743175.72 schema:affiliation https://www.grid.ac/institutes/grid.419262.a
168 schema:familyName Razo-Flores
169 schema:givenName Elías
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354743175.72
171 rdf:type schema:Person
172 sg:person.016415615201.05 schema:affiliation https://www.grid.ac/institutes/grid.419262.a
173 schema:familyName Palomo-Briones
174 schema:givenName Rodolfo
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016415615201.05
176 rdf:type schema:Person
177 sg:person.0701067475.23 schema:affiliation https://www.grid.ac/institutes/grid.419083.7
178 schema:familyName Trably
179 schema:givenName Eric
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701067475.23
181 rdf:type schema:Person
182 sg:person.0726057705.93 schema:affiliation https://www.grid.ac/institutes/grid.419262.a
183 schema:familyName Celis
184 schema:givenName Lourdes B.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726057705.93
186 rdf:type schema:Person
187 sg:pub.10.1007/bf00871640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024725975
188 https://doi.org/10.1007/bf00871640
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s00253-004-1644-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032909681
191 https://doi.org/10.1007/s00253-004-1644-0
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s00253-016-7325-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028335333
194 https://doi.org/10.1007/s00253-016-7325-y
195 rdf:type schema:CreativeWork
196 sg:pub.10.1023/a:1005483609065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041847124
197 https://doi.org/10.1023/a:1005483609065
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
200 https://doi.org/10.1038/nmeth.f.303
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nrmicro3365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022673681
203 https://doi.org/10.1038/nrmicro3365
204 rdf:type schema:CreativeWork
205 sg:pub.10.1186/1752-0509-5-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015934276
206 https://doi.org/10.1186/1752-0509-5-130
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/bit.22010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430133
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/jctb.1512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050972420
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.apenergy.2017.04.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085179930
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.biombioe.2014.01.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040203614
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.biortech.2010.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052852820
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.copbio.2011.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034761947
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.ijhydene.2008.06.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012387495
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.ijhydene.2009.02.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002734001
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ijhydene.2009.08.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004007511
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ijhydene.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016854397
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ijhydene.2013.07.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035766737
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ijhydene.2014.07.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039428234
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.ijhydene.2015.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026648814
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.ijhydene.2015.06.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018912213
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.ijhydene.2015.11.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041326092
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.rser.2013.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051388413
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.tibtech.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008748358
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.watres.2008.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010528554
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s0360-3199(02)00120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021924738
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s1369-703x(02)00171-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006703751
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1021/ac60111a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055031436
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1021/bp000022p schema:sameAs https://app.dimensions.ai/details/publication/pub.1041851858
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.1004716107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008950811
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1080/10643380802000974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034989178
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/bioinformatics/btq461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904619
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/bioinformatics/btr381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013175803
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/femsre/fuw043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059581080
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1128/genomea.00790-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042191209
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1128/genomea.01310-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031554373
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1128/genomea.01356-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002646769
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1128/jb.183.16.4823-4838.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025210625
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1128/mbio.00743-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041360246
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1371/journal.pone.0013033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004874031
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1371/journal.pone.0080692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025400770
275 rdf:type schema:CreativeWork
276 https://doi.org/10.2166/wst.2011.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069145004
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.412890.6 schema:alternateName University of Guadalajara
279 schema:name Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1451, 44430, Guadalajara, JAL, Mexico
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.419083.7 schema:alternateName Laboratoire de Biotechnologie de l'Environnement
282 schema:name LBE, INRA, Université Montpellier, 102 avenue des Etangs, 11100, Narbonne, France
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.419262.a schema:alternateName Institute for Scientific and Technological Research
285 schema:name División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4a Sección, 78216, San Luis Potosí, SLP, Mexico
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...