Influence of aeration intensity on mature aerobic granules in sequencing batch reactor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Da-Wen Gao, Lin Liu, Hong Liang

ABSTRACT

Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption. More... »

PAGES

4213-4219

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-012-4226-6

DOI

http://dx.doi.org/10.1007/s00253-012-4226-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037951099

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22752241


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Oxygen Demand Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sewage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waste Disposal, Fluid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China", 
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Da-Wen", 
        "id": "sg:person.0624111531.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624111531.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Key Laboratory of Urban Environment and Health Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lin", 
        "id": "sg:person.01352170434.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352170434.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeast Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.412246.7", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Hong", 
        "id": "sg:person.01261243676.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261243676.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00253-007-1125-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000145823", 
          "https://doi.org/10.1007/s00253-007-1125-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-007-1125-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000145823", 
          "https://doi.org/10.1007/s00253-007-1125-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2007.11.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005410953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-007-1085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005671234", 
          "https://doi.org/10.1007/s00253-007-1085-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-007-1085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005671234", 
          "https://doi.org/10.1007/s00253-007-1085-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2007.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017454430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2009.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018969198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2007.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020728098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2008.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021012686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1472-765x.2005.01695.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025598154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1466-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026827526", 
          "https://doi.org/10.1007/s00253-008-1466-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1466-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026827526", 
          "https://doi.org/10.1007/s00253-008-1466-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-010-2950-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029547828", 
          "https://doi.org/10.1007/s00253-010-2950-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(86)90142-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031170463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(86)90142-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031170463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530100766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031539306", 
          "https://doi.org/10.1007/s002530100766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2005.04.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2008.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036441367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332308618363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2007.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039337622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bej.2005.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039907387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bej.2005.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039907387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040753218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bej.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2004.01.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045241342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260191204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047889463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1223(99)00602-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054639335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60111a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055031436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.56.3.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068864381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076750128", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2004.0798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076877069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.1999.0371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104101586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00253-012-4226-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7020194", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "97"
      }
    ], 
    "name": "Influence of aeration intensity on mature aerobic granules in sequencing batch reactor", 
    "pagination": "4213-4219", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4c9607e3511201426d75bfe1a12e2a4931fd65c24350dd3cf9842ed0d467add"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22752241"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406612"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-012-4226-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037951099"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-012-4226-6", 
      "https://app.dimensions.ai/details/publication/pub.1037951099"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00253-012-4226-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-012-4226-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-012-4226-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-012-4226-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-012-4226-6'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      62 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-012-4226-6 schema:about N4c2e36e89bdc4871b0684ca4a9087095
2 N6d8dd944cd01439bbd586b2c95f26cbf
3 N9d2d9e11db954b908a2cdd213341409a
4 Na65c58a71d544921b1dc3fdcec14392b
5 Nc95600b7081b4cc3a9dd13f8bc6d4017
6 Nec47c62efa1d45f286e0832e03806d55
7 anzsrc-for:09
8 anzsrc-for:0915
9 schema:author Nf5e9d017b8664ab7bb49d9ffad5dc057
10 schema:citation sg:pub.10.1007/s00253-007-1085-7
11 sg:pub.10.1007/s00253-007-1125-3
12 sg:pub.10.1007/s00253-008-1466-6
13 sg:pub.10.1007/s00253-010-2950-3
14 sg:pub.10.1007/s002530100766
15 https://app.dimensions.ai/details/publication/pub.1076750128
16 https://doi.org/10.1002/bit.260191204
17 https://doi.org/10.1016/0043-1354(86)90142-9
18 https://doi.org/10.1016/j.bej.2005.06.012
19 https://doi.org/10.1016/j.bej.2009.12.009
20 https://doi.org/10.1016/j.biotechadv.2009.05.020
21 https://doi.org/10.1016/j.cej.2008.06.037
22 https://doi.org/10.1016/j.enzmictec.2007.04.005
23 https://doi.org/10.1016/j.enzmictec.2007.05.001
24 https://doi.org/10.1016/j.enzmictec.2008.04.005
25 https://doi.org/10.1016/j.jhazmat.2007.11.058
26 https://doi.org/10.1016/j.jhazmat.2010.11.006
27 https://doi.org/10.1016/j.procbio.2004.01.056
28 https://doi.org/10.1016/j.watres.2005.04.065
29 https://doi.org/10.1016/j.watres.2007.10.013
30 https://doi.org/10.1016/s0273-1223(99)00602-2
31 https://doi.org/10.1021/ac60111a017
32 https://doi.org/10.1080/09593332308618363
33 https://doi.org/10.1111/j.1472-765x.2005.01695.x
34 https://doi.org/10.2105/ajph.56.3.387
35 https://doi.org/10.2166/wst.1999.0371
36 https://doi.org/10.2166/wst.2004.0798
37 schema:datePublished 2013-05
38 schema:datePublishedReg 2013-05-01
39 schema:description Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N87f0fe6492b94c2cbad0d1b1947737e3
44 Nf674a75c697a497b9ae65f3f7aff0fe4
45 sg:journal.1083533
46 schema:name Influence of aeration intensity on mature aerobic granules in sequencing batch reactor
47 schema:pagination 4213-4219
48 schema:productId N1d30d595a627470b89c190f3dafa088d
49 N52bc5a0acbb7484986973d9f5eae3f15
50 N81f0533d54984372b7797a86610f1de8
51 Nb8151f4aeb1444979d6189ecb2c6a636
52 Ne42bedd756094b6eaf109ca1c85a7123
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037951099
54 https://doi.org/10.1007/s00253-012-4226-6
55 schema:sdDatePublished 2019-04-11T00:16
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N06a0fc720d28492098dbb5a2380baa86
58 schema:url http://link.springer.com/10.1007%2Fs00253-012-4226-6
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N06a0fc720d28492098dbb5a2380baa86 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N1d30d595a627470b89c190f3dafa088d schema:name pubmed_id
65 schema:value 22752241
66 rdf:type schema:PropertyValue
67 N31c9cc593ec14d14887214239dcb6b37 rdf:first sg:person.01261243676.23
68 rdf:rest rdf:nil
69 N4c2e36e89bdc4871b0684ca4a9087095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Aerobiosis
71 rdf:type schema:DefinedTerm
72 N52bc5a0acbb7484986973d9f5eae3f15 schema:name dimensions_id
73 schema:value pub.1037951099
74 rdf:type schema:PropertyValue
75 N6d8dd944cd01439bbd586b2c95f26cbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Sewage
77 rdf:type schema:DefinedTerm
78 N7eb1173054d54111a12e1cfbc5323404 rdf:first sg:person.01352170434.14
79 rdf:rest N31c9cc593ec14d14887214239dcb6b37
80 N81f0533d54984372b7797a86610f1de8 schema:name doi
81 schema:value 10.1007/s00253-012-4226-6
82 rdf:type schema:PropertyValue
83 N87f0fe6492b94c2cbad0d1b1947737e3 schema:issueNumber 9
84 rdf:type schema:PublicationIssue
85 N9d2d9e11db954b908a2cdd213341409a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Waste Disposal, Fluid
87 rdf:type schema:DefinedTerm
88 Na65c58a71d544921b1dc3fdcec14392b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Biological Oxygen Demand Analysis
90 rdf:type schema:DefinedTerm
91 Nb8151f4aeb1444979d6189ecb2c6a636 schema:name readcube_id
92 schema:value b4c9607e3511201426d75bfe1a12e2a4931fd65c24350dd3cf9842ed0d467add
93 rdf:type schema:PropertyValue
94 Nc95600b7081b4cc3a9dd13f8bc6d4017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Oxygen
96 rdf:type schema:DefinedTerm
97 Ne42bedd756094b6eaf109ca1c85a7123 schema:name nlm_unique_id
98 schema:value 8406612
99 rdf:type schema:PropertyValue
100 Nec47c62efa1d45f286e0832e03806d55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Bioreactors
102 rdf:type schema:DefinedTerm
103 Nf5e9d017b8664ab7bb49d9ffad5dc057 rdf:first sg:person.0624111531.58
104 rdf:rest N7eb1173054d54111a12e1cfbc5323404
105 Nf674a75c697a497b9ae65f3f7aff0fe4 schema:volumeNumber 97
106 rdf:type schema:PublicationVolume
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
111 schema:name Interdisciplinary Engineering
112 rdf:type schema:DefinedTerm
113 sg:grant.7020194 http://pending.schema.org/fundedItem sg:pub.10.1007/s00253-012-4226-6
114 rdf:type schema:MonetaryGrant
115 sg:journal.1083533 schema:issn 0175-7598
116 1432-0614
117 schema:name Applied Microbiology and Biotechnology
118 rdf:type schema:Periodical
119 sg:person.01261243676.23 schema:affiliation https://www.grid.ac/institutes/grid.412246.7
120 schema:familyName Liang
121 schema:givenName Hong
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261243676.23
123 rdf:type schema:Person
124 sg:person.01352170434.14 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
125 schema:familyName Liu
126 schema:givenName Lin
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352170434.14
128 rdf:type schema:Person
129 sg:person.0624111531.58 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
130 schema:familyName Gao
131 schema:givenName Da-Wen
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624111531.58
133 rdf:type schema:Person
134 sg:pub.10.1007/s00253-007-1085-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005671234
135 https://doi.org/10.1007/s00253-007-1085-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00253-007-1125-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000145823
138 https://doi.org/10.1007/s00253-007-1125-3
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00253-008-1466-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026827526
141 https://doi.org/10.1007/s00253-008-1466-6
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00253-010-2950-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029547828
144 https://doi.org/10.1007/s00253-010-2950-3
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s002530100766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031539306
147 https://doi.org/10.1007/s002530100766
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1076750128 schema:CreativeWork
150 https://doi.org/10.1002/bit.260191204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047889463
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0043-1354(86)90142-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031170463
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.bej.2005.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039907387
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.bej.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919042
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biotechadv.2009.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018969198
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.cej.2008.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021012686
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.enzmictec.2007.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039337622
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.enzmictec.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017454430
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.enzmictec.2008.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036441367
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jhazmat.2007.11.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005410953
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jhazmat.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040753218
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.procbio.2004.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045241342
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.watres.2005.04.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285051
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.watres.2007.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020728098
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0273-1223(99)00602-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054639335
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/ac60111a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055031436
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/09593332308618363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288968
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1472-765x.2005.01695.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025598154
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2105/ajph.56.3.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068864381
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2166/wst.1999.0371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104101586
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2166/wst.2004.0798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076877069
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
193 schema:name School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People’s Republic of China
194 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.412246.7 schema:alternateName Northeast Forestry University
197 schema:name School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People’s Republic of China
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
200 schema:name Key Laboratory of Urban Environment and Health Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...