Reactivation characteristics of stored aerobic granular sludge using different operational strategies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06

AUTHORS

Xiangjuan Yuan, Dawen Gao, Hong Liang

ABSTRACT

Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up. More... »

PAGES

1365-1374

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1

DOI

http://dx.doi.org/10.1007/s00253-011-3660-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028024716

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22072196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sewage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waste Disposal, Fluid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northeast Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.412246.7", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Xiangjuan", 
        "id": "sg:person.01323775337.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323775337.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China", 
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Dawen", 
        "id": "sg:person.0624111531.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624111531.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeast Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.412246.7", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Hong", 
        "id": "sg:person.01261243676.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261243676.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.syapm.2008.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000174085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000448403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005803917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005803917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008643533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2004.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009449221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332608618616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009882041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(00)00450-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2005.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014378488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2005.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014378488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2010.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014393747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1472-765x.2002.01108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019118627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.12.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020521999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-703x(03)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-703x(03)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026291891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029754527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(98)00463-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530100766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031539306", 
          "https://doi.org/10.1007/s002530100766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2008.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2007.05.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038079445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332308618363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2008.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040462396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040753218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0797-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975032", 
          "https://doi.org/10.1007/s00253-006-0797-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0797-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975032", 
          "https://doi.org/10.1007/s00253-006-0797-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.femsre.2004.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041678657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2010.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042610580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1223(97)00547-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043388021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(01)00379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043533448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044632765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047500287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2003.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049920046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332808618883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051728557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593330309385665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051766194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1094)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057579714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1102)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057579715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.56.3.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068864381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2002.0540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075169584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2004.0798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076877069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.1997.0615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104119828"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06", 
    "datePublishedReg": "2012-06-01", 
    "description": "Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00253-011-3660-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7020194", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Reactivation characteristics of stored aerobic granular sludge using different operational strategies", 
    "pagination": "1365-1374", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8580d6073e28da25c6cff3d442deda05297479298cfb23c44b60d190e2eec550"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22072196"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406612"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-011-3660-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028024716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-011-3660-1", 
      "https://app.dimensions.ai/details/publication/pub.1028024716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00253-011-3660-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      73 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-011-3660-1 schema:about N06d1d33a622142c0a16bf872368b6da8
2 N1a0cb742912e4a11881627b118a26e35
3 N2d59af657b094fe1a73eb49014a395ff
4 N38484302cebb4708bb13b8c8f84dedc1
5 N5abd3e9d9f5b4ce1a30902eac82e38ee
6 N7a9a031d258546de878ea4c3484fd762
7 Nb0f7e2fd9a5c472cb0ba5cb2c6755c92
8 anzsrc-for:09
9 anzsrc-for:0907
10 schema:author N466c9230f73a4af89f0ccaa1cf56856b
11 schema:citation sg:pub.10.1007/s00253-006-0797-4
12 sg:pub.10.1007/s002530100766
13 https://doi.org/10.1002/bit.20470
14 https://doi.org/10.1016/j.biortech.2007.03.011
15 https://doi.org/10.1016/j.biortech.2008.03.024
16 https://doi.org/10.1016/j.biortech.2008.05.045
17 https://doi.org/10.1016/j.biortech.2010.12.084
18 https://doi.org/10.1016/j.biotechadv.2004.05.001
19 https://doi.org/10.1016/j.biotechadv.2005.08.001
20 https://doi.org/10.1016/j.biotechadv.2008.05.002
21 https://doi.org/10.1016/j.biotechadv.2010.08.007
22 https://doi.org/10.1016/j.biotechadv.2010.09.004
23 https://doi.org/10.1016/j.chemosphere.2005.08.055
24 https://doi.org/10.1016/j.chemosphere.2007.05.085
25 https://doi.org/10.1016/j.femsre.2004.09.005
26 https://doi.org/10.1016/j.jhazmat.2008.09.034
27 https://doi.org/10.1016/j.jhazmat.2010.05.021
28 https://doi.org/10.1016/j.jhazmat.2010.11.006
29 https://doi.org/10.1016/j.syapm.2008.10.003
30 https://doi.org/10.1016/j.watres.2003.11.041
31 https://doi.org/10.1016/j.watres.2008.05.005
32 https://doi.org/10.1016/s0043-1354(00)00450-4
33 https://doi.org/10.1016/s0043-1354(01)00379-7
34 https://doi.org/10.1016/s0043-1354(98)00463-1
35 https://doi.org/10.1016/s0273-1223(97)00547-7
36 https://doi.org/10.1016/s1369-703x(03)00122-0
37 https://doi.org/10.1046/j.1472-765x.2002.01108.x
38 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1094)
39 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1102)
40 https://doi.org/10.1080/09593330309385665
41 https://doi.org/10.1080/09593332308618363
42 https://doi.org/10.1080/09593332608618616
43 https://doi.org/10.1080/09593332808618883
44 https://doi.org/10.2105/ajph.56.3.387
45 https://doi.org/10.2166/wst.1997.0615
46 https://doi.org/10.2166/wst.2002.0540
47 https://doi.org/10.2166/wst.2004.0798
48 schema:datePublished 2012-06
49 schema:datePublishedReg 2012-06-01
50 schema:description Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N7fec3c0ab9b74919a201cc9b0d14db89
55 N98ed182e175b46b6839c4e77dd0fe241
56 sg:journal.1083533
57 schema:name Reactivation characteristics of stored aerobic granular sludge using different operational strategies
58 schema:pagination 1365-1374
59 schema:productId N16f956ce97414576b9757353bdc77d12
60 N8754c66d152f436f8192ff4f6e3d9670
61 N9077d342290e4bd3a98f743abccfcc78
62 Ne5304f9c37b249989db7c4ebb8bcce0c
63 Ne718767ef5ce4526b59fa4cca3255355
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028024716
65 https://doi.org/10.1007/s00253-011-3660-1
66 schema:sdDatePublished 2019-04-10T22:32
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Na7f9a45d3d5544aca0d687ca2dc09570
69 schema:url http://link.springer.com/10.1007%2Fs00253-011-3660-1
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N06d1d33a622142c0a16bf872368b6da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Aerobiosis
75 rdf:type schema:DefinedTerm
76 N16f956ce97414576b9757353bdc77d12 schema:name readcube_id
77 schema:value 8580d6073e28da25c6cff3d442deda05297479298cfb23c44b60d190e2eec550
78 rdf:type schema:PropertyValue
79 N1a0cb742912e4a11881627b118a26e35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Bioreactors
81 rdf:type schema:DefinedTerm
82 N2d59af657b094fe1a73eb49014a395ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Time Factors
84 rdf:type schema:DefinedTerm
85 N38484302cebb4708bb13b8c8f84dedc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Bacteria
87 rdf:type schema:DefinedTerm
88 N3901d7021b9448e7b3314282c01b5054 rdf:first sg:person.01261243676.23
89 rdf:rest rdf:nil
90 N466c9230f73a4af89f0ccaa1cf56856b rdf:first sg:person.01323775337.21
91 rdf:rest N5bd981a9d9484a7e93c09e9fb0011348
92 N5abd3e9d9f5b4ce1a30902eac82e38ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Sewage
94 rdf:type schema:DefinedTerm
95 N5bd981a9d9484a7e93c09e9fb0011348 rdf:first sg:person.0624111531.58
96 rdf:rest N3901d7021b9448e7b3314282c01b5054
97 N7a9a031d258546de878ea4c3484fd762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Waste Disposal, Fluid
99 rdf:type schema:DefinedTerm
100 N7fec3c0ab9b74919a201cc9b0d14db89 schema:issueNumber 5
101 rdf:type schema:PublicationIssue
102 N8754c66d152f436f8192ff4f6e3d9670 schema:name pubmed_id
103 schema:value 22072196
104 rdf:type schema:PropertyValue
105 N9077d342290e4bd3a98f743abccfcc78 schema:name doi
106 schema:value 10.1007/s00253-011-3660-1
107 rdf:type schema:PropertyValue
108 N98ed182e175b46b6839c4e77dd0fe241 schema:volumeNumber 94
109 rdf:type schema:PublicationVolume
110 Na7f9a45d3d5544aca0d687ca2dc09570 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nb0f7e2fd9a5c472cb0ba5cb2c6755c92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Biomass
114 rdf:type schema:DefinedTerm
115 Ne5304f9c37b249989db7c4ebb8bcce0c schema:name dimensions_id
116 schema:value pub.1028024716
117 rdf:type schema:PropertyValue
118 Ne718767ef5ce4526b59fa4cca3255355 schema:name nlm_unique_id
119 schema:value 8406612
120 rdf:type schema:PropertyValue
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
125 schema:name Environmental Engineering
126 rdf:type schema:DefinedTerm
127 sg:grant.7020194 http://pending.schema.org/fundedItem sg:pub.10.1007/s00253-011-3660-1
128 rdf:type schema:MonetaryGrant
129 sg:journal.1083533 schema:issn 0175-7598
130 1432-0614
131 schema:name Applied Microbiology and Biotechnology
132 rdf:type schema:Periodical
133 sg:person.01261243676.23 schema:affiliation https://www.grid.ac/institutes/grid.412246.7
134 schema:familyName Liang
135 schema:givenName Hong
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261243676.23
137 rdf:type schema:Person
138 sg:person.01323775337.21 schema:affiliation https://www.grid.ac/institutes/grid.412246.7
139 schema:familyName Yuan
140 schema:givenName Xiangjuan
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323775337.21
142 rdf:type schema:Person
143 sg:person.0624111531.58 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
144 schema:familyName Gao
145 schema:givenName Dawen
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624111531.58
147 rdf:type schema:Person
148 sg:pub.10.1007/s00253-006-0797-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040975032
149 https://doi.org/10.1007/s00253-006-0797-4
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s002530100766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031539306
152 https://doi.org/10.1007/s002530100766
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/bit.20470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047500287
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.biortech.2007.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026291891
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biortech.2008.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029754527
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.biortech.2008.05.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008643533
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.biortech.2010.12.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020521999
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.biotechadv.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009449221
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.biotechadv.2005.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005803917
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.biotechadv.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044632765
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.biotechadv.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042610580
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.biotechadv.2010.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014393747
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.chemosphere.2005.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014378488
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.chemosphere.2007.05.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038079445
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.femsre.2004.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041678657
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jhazmat.2008.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625115
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jhazmat.2010.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000448403
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jhazmat.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040753218
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.syapm.2008.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000174085
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.watres.2003.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049920046
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.watres.2008.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040462396
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0043-1354(00)00450-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907681
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0043-1354(01)00379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533448
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0043-1354(98)00463-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223363
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0273-1223(97)00547-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043388021
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s1369-703x(03)00122-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025775491
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1046/j.1472-765x.2002.01108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019118627
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1094) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057579714
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1102) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057579715
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/09593330309385665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051766194
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1080/09593332308618363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288968
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1080/09593332608618616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009882041
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/09593332808618883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051728557
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2105/ajph.56.3.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068864381
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2166/wst.1997.0615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104119828
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2166/wst.2002.0540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075169584
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2166/wst.2004.0798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076877069
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
225 schema:name School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People’s Republic of China
226 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, People’s Republic of China
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.412246.7 schema:alternateName Northeast Forestry University
229 schema:name School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People’s Republic of China
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...