Reactivation characteristics of stored aerobic granular sludge using different operational strategies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06

AUTHORS

Xiangjuan Yuan, Dawen Gao, Hong Liang

ABSTRACT

Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up. More... »

PAGES

1365-1374

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1

DOI

http://dx.doi.org/10.1007/s00253-011-3660-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028024716

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22072196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sewage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waste Disposal, Fluid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northeast Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.412246.7", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Xiangjuan", 
        "id": "sg:person.01323775337.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323775337.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China", 
            "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Dawen", 
        "id": "sg:person.0624111531.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624111531.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeast Forestry University", 
          "id": "https://www.grid.ac/institutes/grid.412246.7", 
          "name": [
            "School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Hong", 
        "id": "sg:person.01261243676.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261243676.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.syapm.2008.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000174085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000448403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005803917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005803917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008643533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2004.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009449221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332608618616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009882041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(00)00450-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2005.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014378488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2005.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014378488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2010.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014393747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1472-765x.2002.01108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019118627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.12.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020521999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-703x(03)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-703x(03)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2007.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026291891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029754527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(98)00463-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530100766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031539306", 
          "https://doi.org/10.1007/s002530100766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2008.09.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2007.05.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038079445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332308618363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038288968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2008.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040462396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040753218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0797-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975032", 
          "https://doi.org/10.1007/s00253-006-0797-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0797-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040975032", 
          "https://doi.org/10.1007/s00253-006-0797-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.femsre.2004.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041678657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2010.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042610580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0273-1223(97)00547-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043388021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(01)00379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043533448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044632765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047500287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2003.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049920046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593332808618883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051728557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09593330309385665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051766194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1094)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057579714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1102)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057579715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.56.3.387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068864381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2002.0540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075169584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2004.0798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076877069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.1997.0615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104119828"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06", 
    "datePublishedReg": "2012-06-01", 
    "description": "Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00253-011-3660-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7020194", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Reactivation characteristics of stored aerobic granular sludge using different operational strategies", 
    "pagination": "1365-1374", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8580d6073e28da25c6cff3d442deda05297479298cfb23c44b60d190e2eec550"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22072196"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406612"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-011-3660-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028024716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-011-3660-1", 
      "https://app.dimensions.ai/details/publication/pub.1028024716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00253-011-3660-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-011-3660-1'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      73 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-011-3660-1 schema:about N82879201feca4ae0b8346c4455283ebb
2 N8f03e6511a9f435b9a566249d21c89e3
3 Nde3d385de45a40519799a6c6b5733b3f
4 Nef61bd84ccb84f1a90161b59609f2ba8
5 Nf02ddb11c3ff472ab440a6ab8059c46c
6 Nf1b7297b1260494fbdcf90d716e5d420
7 Nfa4998e9bc644cfb8ec28edcaceacb72
8 anzsrc-for:09
9 anzsrc-for:0907
10 schema:author N280fcd26b3ba4d1283fb33a721e6576f
11 schema:citation sg:pub.10.1007/s00253-006-0797-4
12 sg:pub.10.1007/s002530100766
13 https://doi.org/10.1002/bit.20470
14 https://doi.org/10.1016/j.biortech.2007.03.011
15 https://doi.org/10.1016/j.biortech.2008.03.024
16 https://doi.org/10.1016/j.biortech.2008.05.045
17 https://doi.org/10.1016/j.biortech.2010.12.084
18 https://doi.org/10.1016/j.biotechadv.2004.05.001
19 https://doi.org/10.1016/j.biotechadv.2005.08.001
20 https://doi.org/10.1016/j.biotechadv.2008.05.002
21 https://doi.org/10.1016/j.biotechadv.2010.08.007
22 https://doi.org/10.1016/j.biotechadv.2010.09.004
23 https://doi.org/10.1016/j.chemosphere.2005.08.055
24 https://doi.org/10.1016/j.chemosphere.2007.05.085
25 https://doi.org/10.1016/j.femsre.2004.09.005
26 https://doi.org/10.1016/j.jhazmat.2008.09.034
27 https://doi.org/10.1016/j.jhazmat.2010.05.021
28 https://doi.org/10.1016/j.jhazmat.2010.11.006
29 https://doi.org/10.1016/j.syapm.2008.10.003
30 https://doi.org/10.1016/j.watres.2003.11.041
31 https://doi.org/10.1016/j.watres.2008.05.005
32 https://doi.org/10.1016/s0043-1354(00)00450-4
33 https://doi.org/10.1016/s0043-1354(01)00379-7
34 https://doi.org/10.1016/s0043-1354(98)00463-1
35 https://doi.org/10.1016/s0273-1223(97)00547-7
36 https://doi.org/10.1016/s1369-703x(03)00122-0
37 https://doi.org/10.1046/j.1472-765x.2002.01108.x
38 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1094)
39 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1102)
40 https://doi.org/10.1080/09593330309385665
41 https://doi.org/10.1080/09593332308618363
42 https://doi.org/10.1080/09593332608618616
43 https://doi.org/10.1080/09593332808618883
44 https://doi.org/10.2105/ajph.56.3.387
45 https://doi.org/10.2166/wst.1997.0615
46 https://doi.org/10.2166/wst.2002.0540
47 https://doi.org/10.2166/wst.2004.0798
48 schema:datePublished 2012-06
49 schema:datePublishedReg 2012-06-01
50 schema:description Aerobic granules after 6 months storage were employed in identical sequencing batch reactors (SBRs) using synthetic wastewater to investigate the impacts of different operational strategies on granules' reactivation process. The SBRs were operated under three operational strategies for reactivation of (a) different organic loading rate (OLR); (b) different ammonia concentration; and (c) different shear force (a superficial upflow air velocity). The results indicated that granules after long-term storage could be successfully recovered after 7 days of operation, and the excellent granule reactivation performance was closely related to the operational strategies, since inappropriate operational strategies could cause the outgrowth of filamentous bacteria and granule disintegration. Based on comprehensive comparison of reactivation performance under different operational strategies, the optimal operation strategy for granule reactivation was suggested at OLR of 0.8 kg COD/m(3)/day, ammonia concentration of 15-20 mg/L, and a superficial upflow air velocity of 2.6 cm/s. After 7 days operation under the optimal strategy, the dark brown granules (12 months storage) restored their bioactivities to previous state, in terms of COD removal efficiency (97.44%) and specific oxygen uptake rate (40.63 mg O(2)/g SS h(-1)). The results shed light on the future practical application of stored aerobic granules as bioseed for reactor fast start-up.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf Na2fed02dc0b242e6b188b8167ab68060
55 Ne266653d611847c9b4c1b9bf581e1ee2
56 sg:journal.1083533
57 schema:name Reactivation characteristics of stored aerobic granular sludge using different operational strategies
58 schema:pagination 1365-1374
59 schema:productId N0dfe366dff0d467ca1b1b31f99e03f29
60 N7d9bd4a0a1c9480e89bf46e888de824c
61 Nc883711bc0744adbb78ac8ad044d9188
62 Ncd58b30003204b59b3f1d3c2da5d6b9e
63 Ne89a3fce6816401b90faee3fffd502da
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028024716
65 https://doi.org/10.1007/s00253-011-3660-1
66 schema:sdDatePublished 2019-04-10T22:32
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nd431e1ebe0304ec4b29bc73673d23f77
69 schema:url http://link.springer.com/10.1007%2Fs00253-011-3660-1
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0dfe366dff0d467ca1b1b31f99e03f29 schema:name readcube_id
74 schema:value 8580d6073e28da25c6cff3d442deda05297479298cfb23c44b60d190e2eec550
75 rdf:type schema:PropertyValue
76 N280fcd26b3ba4d1283fb33a721e6576f rdf:first sg:person.01323775337.21
77 rdf:rest Nea626e6d40dc482a88ebf2aa6050d411
78 N6857368e251742a7ae0aeaef351c6b5c rdf:first sg:person.01261243676.23
79 rdf:rest rdf:nil
80 N7d9bd4a0a1c9480e89bf46e888de824c schema:name dimensions_id
81 schema:value pub.1028024716
82 rdf:type schema:PropertyValue
83 N82879201feca4ae0b8346c4455283ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Time Factors
85 rdf:type schema:DefinedTerm
86 N8f03e6511a9f435b9a566249d21c89e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Bacteria
88 rdf:type schema:DefinedTerm
89 Na2fed02dc0b242e6b188b8167ab68060 schema:issueNumber 5
90 rdf:type schema:PublicationIssue
91 Nc883711bc0744adbb78ac8ad044d9188 schema:name doi
92 schema:value 10.1007/s00253-011-3660-1
93 rdf:type schema:PropertyValue
94 Ncd58b30003204b59b3f1d3c2da5d6b9e schema:name pubmed_id
95 schema:value 22072196
96 rdf:type schema:PropertyValue
97 Nd431e1ebe0304ec4b29bc73673d23f77 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nde3d385de45a40519799a6c6b5733b3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Biomass
101 rdf:type schema:DefinedTerm
102 Ne266653d611847c9b4c1b9bf581e1ee2 schema:volumeNumber 94
103 rdf:type schema:PublicationVolume
104 Ne89a3fce6816401b90faee3fffd502da schema:name nlm_unique_id
105 schema:value 8406612
106 rdf:type schema:PropertyValue
107 Nea626e6d40dc482a88ebf2aa6050d411 rdf:first sg:person.0624111531.58
108 rdf:rest N6857368e251742a7ae0aeaef351c6b5c
109 Nef61bd84ccb84f1a90161b59609f2ba8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Aerobiosis
111 rdf:type schema:DefinedTerm
112 Nf02ddb11c3ff472ab440a6ab8059c46c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Bioreactors
114 rdf:type schema:DefinedTerm
115 Nf1b7297b1260494fbdcf90d716e5d420 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Sewage
117 rdf:type schema:DefinedTerm
118 Nfa4998e9bc644cfb8ec28edcaceacb72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Waste Disposal, Fluid
120 rdf:type schema:DefinedTerm
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
125 schema:name Environmental Engineering
126 rdf:type schema:DefinedTerm
127 sg:grant.7020194 http://pending.schema.org/fundedItem sg:pub.10.1007/s00253-011-3660-1
128 rdf:type schema:MonetaryGrant
129 sg:journal.1083533 schema:issn 0175-7598
130 1432-0614
131 schema:name Applied Microbiology and Biotechnology
132 rdf:type schema:Periodical
133 sg:person.01261243676.23 schema:affiliation https://www.grid.ac/institutes/grid.412246.7
134 schema:familyName Liang
135 schema:givenName Hong
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261243676.23
137 rdf:type schema:Person
138 sg:person.01323775337.21 schema:affiliation https://www.grid.ac/institutes/grid.412246.7
139 schema:familyName Yuan
140 schema:givenName Xiangjuan
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323775337.21
142 rdf:type schema:Person
143 sg:person.0624111531.58 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
144 schema:familyName Gao
145 schema:givenName Dawen
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624111531.58
147 rdf:type schema:Person
148 sg:pub.10.1007/s00253-006-0797-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040975032
149 https://doi.org/10.1007/s00253-006-0797-4
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s002530100766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031539306
152 https://doi.org/10.1007/s002530100766
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/bit.20470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047500287
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.biortech.2007.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026291891
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biortech.2008.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029754527
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.biortech.2008.05.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008643533
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.biortech.2010.12.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020521999
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.biotechadv.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009449221
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.biotechadv.2005.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005803917
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.biotechadv.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044632765
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.biotechadv.2010.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042610580
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.biotechadv.2010.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014393747
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.chemosphere.2005.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014378488
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.chemosphere.2007.05.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038079445
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.femsre.2004.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041678657
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jhazmat.2008.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625115
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jhazmat.2010.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000448403
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jhazmat.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040753218
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.syapm.2008.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000174085
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.watres.2003.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049920046
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.watres.2008.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040462396
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0043-1354(00)00450-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907681
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0043-1354(01)00379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533448
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0043-1354(98)00463-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223363
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0273-1223(97)00547-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043388021
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s1369-703x(03)00122-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025775491
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1046/j.1472-765x.2002.01108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019118627
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1094) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057579714
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1061/(asce)0733-9372(2004)130:10(1102) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057579715
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1080/09593330309385665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051766194
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1080/09593332308618363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038288968
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1080/09593332608618616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009882041
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1080/09593332808618883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051728557
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2105/ajph.56.3.387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068864381
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2166/wst.1997.0615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104119828
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2166/wst.2002.0540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075169584
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2166/wst.2004.0798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076877069
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
225 schema:name School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People’s Republic of China
226 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, People’s Republic of China
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.412246.7 schema:alternateName Northeast Forestry University
229 schema:name School of Forestry, Northeast Forestry University, Hexing Road 26, 150040, Harbin, Heilongjiang Province, People’s Republic of China
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...