Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04-15

AUTHORS

Hua-Ping Dong, Zhi-Qiang Liu, Yu-Guo Zheng, Yin-Chu Shen

ABSTRACT

(R)-ethyl-3-hydroxyglutarate with highly optical purity (≥99%) can be used as a novel precursor for synthesis of chiral side chain of rosuvastatin. In this study, a novel synthesis route of (R)-ethyl-3-hydroxyglutarate by whole microorganism cells from racemic ethyl 4-cyano-3-hydroxybutyate was created. A strain ZJB-0910 capable of transforming racemic β-hydroxy aliphatic nitrile was isolated by employing a screening method based on a colorimetric reaction of Co2+ ion with ammonia, and identified as Rhodococcus erythropolis based on its morphology, physiological tests, Biolog, and the 16S rDNA sequence. After cultivation in a sterilized medium with composition of 20 g glucose, 5 g yeast extract, 0.5 g KH2PO4, 0.5 g K2HPO4, 0.2 g MgSO4·7H2O per liter at 30°C and 150 rpm for 48 h, the whole cells of R. erythropolis ZJB-0910 were prepared as a catalyst in (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate for synthesis of (R)-ethyl-3-hydroxyglutarate, without bearing hydrolase activity for the ester bond of ethyl 4-cyano-3-hydroxybutyate. Under the optimized biotransformation conditions of pH 7.5, 30°C, and 20 mM substrate concentration, (R)-ethyl-3-hydroxyglutarate with 46.2% yield (ee > 99%) was afforded, and its chemical structure was determined by ESI-MS, NMR, and IR. The apparent Michaelis constant Km and maximum rate Vmax for this biocatalytic reaction were 0.01 M and 85.6 μmol min−1 g−1, respectively. More... »

PAGES

1335-1345

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-010-2584-5

DOI

http://dx.doi.org/10.1007/s00253-010-2584-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052610166

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20393698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0305", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Organic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotransformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutarates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rhodococcus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stereoisomerism", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Chemistry and Chemical Engineering, Shaoxing University, 312000, Shaoxing, Zhejiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.412551.6", 
          "name": [
            "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China", 
            "Institute of Chemistry and Chemical Engineering, Shaoxing University, 312000, Shaoxing, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Hua-Ping", 
        "id": "sg:person.07467305426.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467305426.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhi-Qiang", 
        "id": "sg:person.01256734541.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256734541.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yu-Guo", 
        "id": "sg:person.01144225405.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144225405.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Yin-Chu", 
        "id": "sg:person.01072704134.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072704134.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10529-004-5320-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044857360", 
          "https://doi.org/10.1007/s10529-004-5320-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/10_2008_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952913", 
          "https://doi.org/10.1007/10_2008_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1365/s10337-009-1401-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042110778", 
          "https://doi.org/10.1365/s10337-009-1401-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-009-1862-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008001925", 
          "https://doi.org/10.1007/s00253-009-1862-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11244-005-3817-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012803549", 
          "https://doi.org/10.1007/s11244-005-3817-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-009-2143-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043482154", 
          "https://doi.org/10.1007/s00253-009-2143-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-006-0642-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014627874", 
          "https://doi.org/10.1007/s00253-006-0642-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-008-1685-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045804765", 
          "https://doi.org/10.1007/s00253-008-1685-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-007-1236-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008191782", 
          "https://doi.org/10.1007/s00253-007-1236-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04-15", 
    "datePublishedReg": "2010-04-15", 
    "description": "Abstract(R)-ethyl-3-hydroxyglutarate with highly optical purity (\u226599%) can be used as a novel precursor for synthesis of chiral side chain of rosuvastatin. In this study, a novel synthesis route of (R)-ethyl-3-hydroxyglutarate by whole microorganism cells from racemic ethyl 4-cyano-3-hydroxybutyate was created. A strain ZJB-0910 capable of transforming racemic \u03b2-hydroxy aliphatic nitrile was isolated by employing a screening method based on a colorimetric reaction of Co2+ ion with ammonia, and identified as Rhodococcus erythropolis based on its morphology, physiological tests, Biolog, and the 16S rDNA sequence. After cultivation in a sterilized medium with composition of 20\u00a0g glucose, 5\u00a0g yeast extract, 0.5\u00a0g KH2PO4, 0.5\u00a0g K2HPO4, 0.2\u00a0g MgSO4\u00b77H2O per liter at 30\u00b0C and 150\u00a0rpm for 48\u00a0h, the whole cells of R. erythropolis ZJB-0910 were prepared as a catalyst in (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate for synthesis of (R)-ethyl-3-hydroxyglutarate, without bearing hydrolase activity for the ester bond of ethyl 4-cyano-3-hydroxybutyate. Under the optimized biotransformation conditions of pH 7.5, 30\u00b0C, and 20 mM substrate concentration, (R)-ethyl-3-hydroxyglutarate with 46.2% yield (ee\u2009>\u200999%) was afforded, and its chemical structure was determined by ESI-MS, NMR, and IR. The apparent Michaelis constant Km and maximum rate Vmax for this biocatalytic reaction were 0.01\u00a0M and 85.6\u00a0\u03bcmol\u00a0min\u22121\u2009g\u22121, respectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00253-010-2584-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "keywords": [
      "ethyl 4", 
      "chiral side chains", 
      "novel synthesis route", 
      "maximum rate Vmax", 
      "apparent Michaelis constant Km", 
      "enantioselective hydrolysis", 
      "synthesis route", 
      "ESI-MS", 
      "chemical structure", 
      "biocatalytic reactions", 
      "novel biosynthesis", 
      "novel precursor", 
      "side chains", 
      "ester bond", 
      "aliphatic nitriles", 
      "Michaelis constant Km", 
      "optical purity", 
      "colorimetric reaction", 
      "Rhodococcus erythropolis", 
      "microorganism cells", 
      "synthesis", 
      "constant Km", 
      "reaction", 
      "hydrolysis", 
      "substrate concentration", 
      "catalyst", 
      "NMR", 
      "IR", 
      "nitriles", 
      "bonds", 
      "ions", 
      "screening method", 
      "ammonia", 
      "precursors", 
      "whole cells", 
      "purity", 
      "erythropolis", 
      "route", 
      "CO2", 
      "chain", 
      "morphology", 
      "yield", 
      "structure", 
      "composition", 
      "KH2PO4", 
      "concentration", 
      "K2HPO4", 
      "extract", 
      "hydrolase activity", 
      "biosynthesis", 
      "medium", 
      "activity", 
      "Km", 
      "biotransformation conditions", 
      "method", 
      "cells", 
      "rpm", 
      "conditions", 
      "glucose", 
      "yeast extract", 
      "Vmax", 
      "study", 
      "rosuvastatin", 
      "sequence", 
      "test", 
      "physiological tests", 
      "Biolog", 
      "cultivation", 
      "rDNA sequences"
    ], 
    "name": "Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis", 
    "pagination": "1335-1345", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052610166"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-010-2584-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20393698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-010-2584-5", 
      "https://app.dimensions.ai/details/publication/pub.1052610166"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00253-010-2584-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-010-2584-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-010-2584-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-010-2584-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-010-2584-5'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      112 URIs      94 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-010-2584-5 schema:about N53b139bbbecc44a9846e1ba3f5bfd2e8
2 N5c5bf18fc25349679fa34080725f90b5
3 N887e827672a349769aeaa79adbb4ad38
4 N90ba1d227b4f40938444248972b01a68
5 Na088705635514b8781767500145bab51
6 Nad8300544feb42a99e4f749d75e1339d
7 Ndbfa7fcf5cd94370a2bc5d70389dfe50
8 Ne30b3755af1e46f5ae0a58289bb930fc
9 anzsrc-for:03
10 anzsrc-for:0305
11 anzsrc-for:0306
12 schema:author Nd23ddf66503a4517bb249e69c9ead8a5
13 schema:citation sg:pub.10.1007/10_2008_25
14 sg:pub.10.1007/s00253-006-0642-9
15 sg:pub.10.1007/s00253-007-1236-x
16 sg:pub.10.1007/s00253-008-1685-x
17 sg:pub.10.1007/s00253-009-1862-6
18 sg:pub.10.1007/s00253-009-2143-0
19 sg:pub.10.1007/s10529-004-5320-3
20 sg:pub.10.1007/s11244-005-3817-1
21 sg:pub.10.1365/s10337-009-1401-8
22 schema:datePublished 2010-04-15
23 schema:datePublishedReg 2010-04-15
24 schema:description Abstract(R)-ethyl-3-hydroxyglutarate with highly optical purity (≥99%) can be used as a novel precursor for synthesis of chiral side chain of rosuvastatin. In this study, a novel synthesis route of (R)-ethyl-3-hydroxyglutarate by whole microorganism cells from racemic ethyl 4-cyano-3-hydroxybutyate was created. A strain ZJB-0910 capable of transforming racemic β-hydroxy aliphatic nitrile was isolated by employing a screening method based on a colorimetric reaction of Co2+ ion with ammonia, and identified as Rhodococcus erythropolis based on its morphology, physiological tests, Biolog, and the 16S rDNA sequence. After cultivation in a sterilized medium with composition of 20 g glucose, 5 g yeast extract, 0.5 g KH2PO4, 0.5 g K2HPO4, 0.2 g MgSO4·7H2O per liter at 30°C and 150 rpm for 48 h, the whole cells of R. erythropolis ZJB-0910 were prepared as a catalyst in (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate for synthesis of (R)-ethyl-3-hydroxyglutarate, without bearing hydrolase activity for the ester bond of ethyl 4-cyano-3-hydroxybutyate. Under the optimized biotransformation conditions of pH 7.5, 30°C, and 20 mM substrate concentration, (R)-ethyl-3-hydroxyglutarate with 46.2% yield (ee > 99%) was afforded, and its chemical structure was determined by ESI-MS, NMR, and IR. The apparent Michaelis constant Km and maximum rate Vmax for this biocatalytic reaction were 0.01 M and 85.6 μmol min−1 g−1, respectively.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N1045fee42925413ab6adc8c1fdb6f2e9
28 Nf78d08599697418690888a83e9811feb
29 sg:journal.1083533
30 schema:keywords Biolog
31 CO2
32 ESI-MS
33 IR
34 K2HPO4
35 KH2PO4
36 Km
37 Michaelis constant Km
38 NMR
39 Rhodococcus erythropolis
40 Vmax
41 activity
42 aliphatic nitriles
43 ammonia
44 apparent Michaelis constant Km
45 biocatalytic reactions
46 biosynthesis
47 biotransformation conditions
48 bonds
49 catalyst
50 cells
51 chain
52 chemical structure
53 chiral side chains
54 colorimetric reaction
55 composition
56 concentration
57 conditions
58 constant Km
59 cultivation
60 enantioselective hydrolysis
61 erythropolis
62 ester bond
63 ethyl 4
64 extract
65 glucose
66 hydrolase activity
67 hydrolysis
68 ions
69 maximum rate Vmax
70 medium
71 method
72 microorganism cells
73 morphology
74 nitriles
75 novel biosynthesis
76 novel precursor
77 novel synthesis route
78 optical purity
79 physiological tests
80 precursors
81 purity
82 rDNA sequences
83 reaction
84 rosuvastatin
85 route
86 rpm
87 screening method
88 sequence
89 side chains
90 structure
91 study
92 substrate concentration
93 synthesis
94 synthesis route
95 test
96 whole cells
97 yeast extract
98 yield
99 schema:name Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis
100 schema:pagination 1335-1345
101 schema:productId N9223f45fe80b495c98e99dc84a0a9484
102 Nceff49e49199492ab083d7abd95ac1b5
103 Ncf8b7622040d462db9a48844daa48921
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052610166
105 https://doi.org/10.1007/s00253-010-2584-5
106 schema:sdDatePublished 2022-08-04T16:57
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nfe4d92d8699841359334d509e11b2976
109 schema:url https://doi.org/10.1007/s00253-010-2584-5
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N1045fee42925413ab6adc8c1fdb6f2e9 schema:issueNumber 4
114 rdf:type schema:PublicationIssue
115 N53b139bbbecc44a9846e1ba3f5bfd2e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Glutarates
117 rdf:type schema:DefinedTerm
118 N5c5bf18fc25349679fa34080725f90b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Stereoisomerism
120 rdf:type schema:DefinedTerm
121 N6de44bbcc4d54f54b064b20152b8dadd rdf:first sg:person.01144225405.06
122 rdf:rest Na305bff8ac8d41d19388c2dc88902129
123 N887e827672a349769aeaa79adbb4ad38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Phylogeny
125 rdf:type schema:DefinedTerm
126 N90ba1d227b4f40938444248972b01a68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Molecular Sequence Data
128 rdf:type schema:DefinedTerm
129 N9223f45fe80b495c98e99dc84a0a9484 schema:name doi
130 schema:value 10.1007/s00253-010-2584-5
131 rdf:type schema:PropertyValue
132 Na088705635514b8781767500145bab51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Hydrolysis
134 rdf:type schema:DefinedTerm
135 Na305bff8ac8d41d19388c2dc88902129 rdf:first sg:person.01072704134.44
136 rdf:rest rdf:nil
137 Nad8300544feb42a99e4f749d75e1339d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Biotransformation
139 rdf:type schema:DefinedTerm
140 Nceff49e49199492ab083d7abd95ac1b5 schema:name dimensions_id
141 schema:value pub.1052610166
142 rdf:type schema:PropertyValue
143 Ncf8b7622040d462db9a48844daa48921 schema:name pubmed_id
144 schema:value 20393698
145 rdf:type schema:PropertyValue
146 Nd23ddf66503a4517bb249e69c9ead8a5 rdf:first sg:person.07467305426.99
147 rdf:rest Ndb1bb4dcac5b476ab7ab450c2a7d59e9
148 Ndb1bb4dcac5b476ab7ab450c2a7d59e9 rdf:first sg:person.01256734541.85
149 rdf:rest N6de44bbcc4d54f54b064b20152b8dadd
150 Ndbfa7fcf5cd94370a2bc5d70389dfe50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Soil Microbiology
152 rdf:type schema:DefinedTerm
153 Ne30b3755af1e46f5ae0a58289bb930fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Rhodococcus
155 rdf:type schema:DefinedTerm
156 Nf78d08599697418690888a83e9811feb schema:volumeNumber 87
157 rdf:type schema:PublicationVolume
158 Nfe4d92d8699841359334d509e11b2976 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
161 schema:name Chemical Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0305 schema:inDefinedTermSet anzsrc-for:
164 schema:name Organic Chemistry
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
167 schema:name Physical Chemistry (incl. Structural)
168 rdf:type schema:DefinedTerm
169 sg:journal.1083533 schema:issn 0175-7598
170 1432-0614
171 schema:name Applied Microbiology and Biotechnology
172 schema:publisher Springer Nature
173 rdf:type schema:Periodical
174 sg:person.01072704134.44 schema:affiliation grid-institutes:grid.469325.f
175 schema:familyName Shen
176 schema:givenName Yin-Chu
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072704134.44
178 rdf:type schema:Person
179 sg:person.01144225405.06 schema:affiliation grid-institutes:grid.469325.f
180 schema:familyName Zheng
181 schema:givenName Yu-Guo
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144225405.06
183 rdf:type schema:Person
184 sg:person.01256734541.85 schema:affiliation grid-institutes:grid.469325.f
185 schema:familyName Liu
186 schema:givenName Zhi-Qiang
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256734541.85
188 rdf:type schema:Person
189 sg:person.07467305426.99 schema:affiliation grid-institutes:grid.412551.6
190 schema:familyName Dong
191 schema:givenName Hua-Ping
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467305426.99
193 rdf:type schema:Person
194 sg:pub.10.1007/10_2008_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031952913
195 https://doi.org/10.1007/10_2008_25
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00253-006-0642-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014627874
198 https://doi.org/10.1007/s00253-006-0642-9
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00253-007-1236-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008191782
201 https://doi.org/10.1007/s00253-007-1236-x
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00253-008-1685-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045804765
204 https://doi.org/10.1007/s00253-008-1685-x
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00253-009-1862-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008001925
207 https://doi.org/10.1007/s00253-009-1862-6
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s00253-009-2143-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043482154
210 https://doi.org/10.1007/s00253-009-2143-0
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s10529-004-5320-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044857360
213 https://doi.org/10.1007/s10529-004-5320-3
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s11244-005-3817-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012803549
216 https://doi.org/10.1007/s11244-005-3817-1
217 rdf:type schema:CreativeWork
218 sg:pub.10.1365/s10337-009-1401-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042110778
219 https://doi.org/10.1365/s10337-009-1401-8
220 rdf:type schema:CreativeWork
221 grid-institutes:grid.412551.6 schema:alternateName Institute of Chemistry and Chemical Engineering, Shaoxing University, 312000, Shaoxing, Zhejiang, People’s Republic of China
222 schema:name Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People’s Republic of China
223 Institute of Chemistry and Chemical Engineering, Shaoxing University, 312000, Shaoxing, Zhejiang, People’s Republic of China
224 rdf:type schema:Organization
225 grid-institutes:grid.469325.f schema:alternateName Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People’s Republic of China
226 schema:name Institute of Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, People’s Republic of China
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...