Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

Qingzhao Wang, Xun Chen, Yudi Yang, Xueming Zhao

ABSTRACT

In the post-genome era, it is one challenge to understand the cellular metabolism at the systematic levels. Mathematical modeling of microorganisms and subsequent computer simulation are effective tools for systems biology. In this paper, based on the genome-scale Escherichia coli stoichiometric model iJR904, through the GAMS linear programming package, the in silico maximal succinate yield was estimated to be 1.714 mol/mol glucose. When another two constraints were added, the maximal succinate yield dropped to 1.60 mol/mol glucose. Further analysis substantiated the uniqueness of the flux distribution under such constraints. After comparisons with the metabolic flux analysis (MFA) results computed from the wet experimental data of the three kinds of E. coli, three potential improvement target sites, the glucose phosphotransferase transport system, the pyruvate carboxylase, and the glyoxylate shunt, were identified and selected for the genetic modifications. All the three genetic modified strains showed increased succinate yield. The final strain TUQ19/pQZ6 had a high yield of 1.29 mol succinate/mol glucose and high productivity. The success of the above experiments proved that this in silico optimal succinate production pathway is reasonable and practical. This method may also be used as a general strategy to help enhance the yields of other favorable metabolites in E. coli. More... »

PAGES

887-894

Journal

TITLE

Applied Microbiology and Biotechnology

ISSUE

4

VOLUME

73

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-006-0535-y

DOI

http://dx.doi.org/10.1007/s00253-006-0535-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005088645

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16927085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anaerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Deletion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glyoxylates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphoenolpyruvate Sugar Phosphotransferase System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pyruvate Carboxylase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Repressor Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Succinic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qingzhao", 
        "id": "sg:person.01342320257.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342320257.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xun", 
        "id": "sg:person.01110274303.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110274303.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yudi", 
        "id": "sg:person.01004462107.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004462107.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xueming", 
        "id": "sg:person.01236656057.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236656057.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymben.2005.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004516970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.12.7880-7887.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012714652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/3527600728.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012843277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014057882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/84379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458337", 
          "https://doi.org/10.1038/84379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/84379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015458337", 
          "https://doi.org/10.1038/84379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-005-0231-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017701472", 
          "https://doi.org/10.1007/s10295-005-0231-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-005-0231-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017701472", 
          "https://doi.org/10.1007/s10295-005-0231-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10295-005-0231-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017701472", 
          "https://doi.org/10.1007/s10295-005-0231-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2004.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022181014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m201691200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023381517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023880741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.10288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025213693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-9-r54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027511348", 
          "https://doi.org/10.1186/gb-2003-4-9-r54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.1.148-154.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028613730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-143-1-187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030708057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030936337", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4645-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030936337", 
          "https://doi.org/10.1007/978-1-4757-4645-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4645-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030936337", 
          "https://doi.org/10.1007/978-1-4757-4645-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031178081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.4.1715-1727.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035032326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002530051431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378299", 
          "https://doi.org/10.1007/s002530051431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.120163297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039276805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.1.229-239.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040687530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.2003.03287.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040816514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-4622(01)00229-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045016905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp000069a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046427994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046604893", 
          "https://doi.org/10.1038/nbt1016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046604893", 
          "https://doi.org/10.1038/nbt1016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7799(03)00030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048025346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-005-0277-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049531718", 
          "https://doi.org/10.1007/s00253-005-0277-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-005-0277-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049531718", 
          "https://doi.org/10.1007/s00253-005-0277-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(69)13049-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-147-6-1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060370721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-148-4-1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060371051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.178.1.321-324.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062724790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074513035", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076584762", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082887369", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083113238", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083300818", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "In the post-genome era, it is one challenge to understand the cellular metabolism at the systematic levels. Mathematical modeling of microorganisms and subsequent computer simulation are effective tools for systems biology. In this paper, based on the genome-scale Escherichia coli stoichiometric model iJR904, through the GAMS linear programming package, the in silico maximal succinate yield was estimated to be 1.714 mol/mol glucose. When another two constraints were added, the maximal succinate yield dropped to 1.60 mol/mol glucose. Further analysis substantiated the uniqueness of the flux distribution under such constraints. After comparisons with the metabolic flux analysis (MFA) results computed from the wet experimental data of the three kinds of E. coli, three potential improvement target sites, the glucose phosphotransferase transport system, the pyruvate carboxylase, and the glyoxylate shunt, were identified and selected for the genetic modifications. All the three genetic modified strains showed increased succinate yield. The final strain TUQ19/pQZ6 had a high yield of 1.29 mol succinate/mol glucose and high productivity. The success of the above experiments proved that this in silico optimal succinate production pathway is reasonable and practical. This method may also be used as a general strategy to help enhance the yields of other favorable metabolites in E. coli.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00253-006-0535-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4967840", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production", 
    "pagination": "887-894", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "183ebeccf3ce67d60f75d4d4eee97dd7a79e24b1d6af31937e5c7629fe2583bd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16927085"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8406612"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-006-0535-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005088645"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-006-0535-y", 
      "https://app.dimensions.ai/details/publication/pub.1005088645"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13069_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00253-006-0535-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0535-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0535-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0535-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0535-y'


 

This table displays all metadata directly associated to this object as RDF triples.

262 TRIPLES      21 PREDICATES      80 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-006-0535-y schema:about N01319d47ceba4799a5f9079715b786e4
2 N1157dc72b2f94c93bdc2af99e7d61daf
3 N23318c667d8f4d508b5889e68aafae7f
4 N3b28488c9b954fd9a5920145525a8ff2
5 N60f3853abda741ea990b2af017d891bc
6 N6fcbeda816184645be9f1ff2a7fc5dda
7 N803db720ca824b1d849ced6223223119
8 N82402b1046754fb5bd57f38dd175bf3d
9 N98fb49b3dac1412391c2cc70dedb49e1
10 Na039046644214b4eafb919f0c48b07dd
11 Na92688d9c4664f0ea798c2339ff29abd
12 Nb4d6171366294dd6bea0658a1c8873ed
13 Nd10a87c5f2b048e594a4bf659c365cc2
14 Nf1a0d468178b47ab9dd3249b26412818
15 Nf2d6725457c4487c881578e9ee3697bb
16 Nf5d2477fa10744268bf89ab76fb3575e
17 anzsrc-for:01
18 anzsrc-for:0102
19 schema:author N14efe33af5984fbd8d0d0b811371a510
20 schema:citation sg:pub.10.1007/978-1-4757-4645-7
21 sg:pub.10.1007/s00253-005-0277-2
22 sg:pub.10.1007/s002530051431
23 sg:pub.10.1007/s10295-005-0231-4
24 sg:pub.10.1038/84379
25 sg:pub.10.1038/nbt1016
26 sg:pub.10.1186/gb-2003-4-9-r54
27 https://app.dimensions.ai/details/publication/pub.1030936337
28 https://app.dimensions.ai/details/publication/pub.1074513035
29 https://app.dimensions.ai/details/publication/pub.1076584762
30 https://app.dimensions.ai/details/publication/pub.1082887369
31 https://app.dimensions.ai/details/publication/pub.1083113238
32 https://app.dimensions.ai/details/publication/pub.1083300818
33 https://doi.org/10.1002/3527600728.ch5
34 https://doi.org/10.1002/bit.10288
35 https://doi.org/10.1002/bit.1098
36 https://doi.org/10.1002/bit.20274
37 https://doi.org/10.1002/bit.20381
38 https://doi.org/10.1016/0076-6879(69)13049-9
39 https://doi.org/10.1016/j.jbiotec.2004.04.038
40 https://doi.org/10.1016/j.ymben.2005.03.001
41 https://doi.org/10.1016/s0167-7799(03)00030-1
42 https://doi.org/10.1016/s0301-4622(01)00229-0
43 https://doi.org/10.1021/bp000069a
44 https://doi.org/10.1046/j.1365-2958.2003.03287.x
45 https://doi.org/10.1073/pnas.120163297
46 https://doi.org/10.1074/jbc.m201691200
47 https://doi.org/10.1099/00221287-143-1-187
48 https://doi.org/10.1099/00221287-147-6-1461
49 https://doi.org/10.1099/00221287-148-4-1003
50 https://doi.org/10.1128/aem.67.1.148-154.2001
51 https://doi.org/10.1128/aem.68.4.1715-1727.2002
52 https://doi.org/10.1128/aem.70.1.229-239.2004
53 https://doi.org/10.1128/aem.71.12.7880-7887.2005
54 https://doi.org/10.1128/jb.178.1.321-324.1996
55 schema:datePublished 2006-12
56 schema:datePublishedReg 2006-12-01
57 schema:description In the post-genome era, it is one challenge to understand the cellular metabolism at the systematic levels. Mathematical modeling of microorganisms and subsequent computer simulation are effective tools for systems biology. In this paper, based on the genome-scale Escherichia coli stoichiometric model iJR904, through the GAMS linear programming package, the in silico maximal succinate yield was estimated to be 1.714 mol/mol glucose. When another two constraints were added, the maximal succinate yield dropped to 1.60 mol/mol glucose. Further analysis substantiated the uniqueness of the flux distribution under such constraints. After comparisons with the metabolic flux analysis (MFA) results computed from the wet experimental data of the three kinds of E. coli, three potential improvement target sites, the glucose phosphotransferase transport system, the pyruvate carboxylase, and the glyoxylate shunt, were identified and selected for the genetic modifications. All the three genetic modified strains showed increased succinate yield. The final strain TUQ19/pQZ6 had a high yield of 1.29 mol succinate/mol glucose and high productivity. The success of the above experiments proved that this in silico optimal succinate production pathway is reasonable and practical. This method may also be used as a general strategy to help enhance the yields of other favorable metabolites in E. coli.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N3002bfe8ca3740028bcb77e3613fa6c2
62 Nffdbe619127b41a39c30095e7546f189
63 sg:journal.1083533
64 schema:name Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production
65 schema:pagination 887-894
66 schema:productId N061bd91623c04a6a8f57cd9a28a0c0fc
67 N086eb1727b9f4b32997d4731d7cc7380
68 N769f61d862c343bab62d250083d3ea1c
69 Na8bd45751f4944c2aa9f69388b3d30b9
70 Nd31bdbc001d74e14a3bf2a0412f5814d
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005088645
72 https://doi.org/10.1007/s00253-006-0535-y
73 schema:sdDatePublished 2019-04-11T14:25
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N1d3655060a75422d912d0cb15bbdde77
76 schema:url http://link.springer.com/10.1007%2Fs00253-006-0535-y
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N01319d47ceba4799a5f9079715b786e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Escherichia coli Proteins
82 rdf:type schema:DefinedTerm
83 N061bd91623c04a6a8f57cd9a28a0c0fc schema:name readcube_id
84 schema:value 183ebeccf3ce67d60f75d4d4eee97dd7a79e24b1d6af31937e5c7629fe2583bd
85 rdf:type schema:PropertyValue
86 N086eb1727b9f4b32997d4731d7cc7380 schema:name dimensions_id
87 schema:value pub.1005088645
88 rdf:type schema:PropertyValue
89 N1157dc72b2f94c93bdc2af99e7d61daf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Phosphoenolpyruvate Sugar Phosphotransferase System
91 rdf:type schema:DefinedTerm
92 N14efe33af5984fbd8d0d0b811371a510 rdf:first sg:person.01342320257.61
93 rdf:rest N386e4e6de262440e9a1478ce7d7f3b91
94 N1680b922a8e54d80b7fa1420f79a9060 rdf:first sg:person.01236656057.95
95 rdf:rest rdf:nil
96 N1d3655060a75422d912d0cb15bbdde77 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N23318c667d8f4d508b5889e68aafae7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Transcription Factors
100 rdf:type schema:DefinedTerm
101 N3002bfe8ca3740028bcb77e3613fa6c2 schema:volumeNumber 73
102 rdf:type schema:PublicationVolume
103 N386e4e6de262440e9a1478ce7d7f3b91 rdf:first sg:person.01110274303.93
104 rdf:rest Nbde57e3ee0e1417aaacc243cf4701e8a
105 N3b28488c9b954fd9a5920145525a8ff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Escherichia coli
107 rdf:type schema:DefinedTerm
108 N60f3853abda741ea990b2af017d891bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Metabolic Networks and Pathways
110 rdf:type schema:DefinedTerm
111 N6fcbeda816184645be9f1ff2a7fc5dda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Computational Biology
113 rdf:type schema:DefinedTerm
114 N769f61d862c343bab62d250083d3ea1c schema:name pubmed_id
115 schema:value 16927085
116 rdf:type schema:PropertyValue
117 N803db720ca824b1d849ced6223223119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Models, Biological
119 rdf:type schema:DefinedTerm
120 N82402b1046754fb5bd57f38dd175bf3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Pyruvate Carboxylase
122 rdf:type schema:DefinedTerm
123 N98fb49b3dac1412391c2cc70dedb49e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Succinic Acid
125 rdf:type schema:DefinedTerm
126 Na039046644214b4eafb919f0c48b07dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Anaerobiosis
128 rdf:type schema:DefinedTerm
129 Na8bd45751f4944c2aa9f69388b3d30b9 schema:name doi
130 schema:value 10.1007/s00253-006-0535-y
131 rdf:type schema:PropertyValue
132 Na92688d9c4664f0ea798c2339ff29abd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Repressor Proteins
134 rdf:type schema:DefinedTerm
135 Nb4d6171366294dd6bea0658a1c8873ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Computer Simulation
137 rdf:type schema:DefinedTerm
138 Nbde57e3ee0e1417aaacc243cf4701e8a rdf:first sg:person.01004462107.81
139 rdf:rest N1680b922a8e54d80b7fa1420f79a9060
140 Nd10a87c5f2b048e594a4bf659c365cc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Glyoxylates
142 rdf:type schema:DefinedTerm
143 Nd31bdbc001d74e14a3bf2a0412f5814d schema:name nlm_unique_id
144 schema:value 8406612
145 rdf:type schema:PropertyValue
146 Nf1a0d468178b47ab9dd3249b26412818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Gene Deletion
148 rdf:type schema:DefinedTerm
149 Nf2d6725457c4487c881578e9ee3697bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Genome, Bacterial
151 rdf:type schema:DefinedTerm
152 Nf5d2477fa10744268bf89ab76fb3575e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Glucose
154 rdf:type schema:DefinedTerm
155 Nffdbe619127b41a39c30095e7546f189 schema:issueNumber 4
156 rdf:type schema:PublicationIssue
157 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
158 schema:name Mathematical Sciences
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
161 schema:name Applied Mathematics
162 rdf:type schema:DefinedTerm
163 sg:grant.4967840 http://pending.schema.org/fundedItem sg:pub.10.1007/s00253-006-0535-y
164 rdf:type schema:MonetaryGrant
165 sg:journal.1083533 schema:issn 0175-7598
166 1432-0614
167 schema:name Applied Microbiology and Biotechnology
168 rdf:type schema:Periodical
169 sg:person.01004462107.81 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
170 schema:familyName Yang
171 schema:givenName Yudi
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004462107.81
173 rdf:type schema:Person
174 sg:person.01110274303.93 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
175 schema:familyName Chen
176 schema:givenName Xun
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110274303.93
178 rdf:type schema:Person
179 sg:person.01236656057.95 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
180 schema:familyName Zhao
181 schema:givenName Xueming
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236656057.95
183 rdf:type schema:Person
184 sg:person.01342320257.61 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
185 schema:familyName Wang
186 schema:givenName Qingzhao
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342320257.61
188 rdf:type schema:Person
189 sg:pub.10.1007/978-1-4757-4645-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030936337
190 https://doi.org/10.1007/978-1-4757-4645-7
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00253-005-0277-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049531718
193 https://doi.org/10.1007/s00253-005-0277-2
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s002530051431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378299
196 https://doi.org/10.1007/s002530051431
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s10295-005-0231-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017701472
199 https://doi.org/10.1007/s10295-005-0231-4
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/84379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458337
202 https://doi.org/10.1038/84379
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nbt1016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046604893
205 https://doi.org/10.1038/nbt1016
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/gb-2003-4-9-r54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027511348
208 https://doi.org/10.1186/gb-2003-4-9-r54
209 rdf:type schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1030936337 schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1074513035 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1076584762 schema:CreativeWork
213 https://app.dimensions.ai/details/publication/pub.1082887369 schema:CreativeWork
214 https://app.dimensions.ai/details/publication/pub.1083113238 schema:CreativeWork
215 https://app.dimensions.ai/details/publication/pub.1083300818 schema:CreativeWork
216 https://doi.org/10.1002/3527600728.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012843277
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/bit.10288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025213693
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/bit.1098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031178081
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/bit.20274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014057882
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/bit.20381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023880741
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/0076-6879(69)13049-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049986763
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.jbiotec.2004.04.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022181014
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ymben.2005.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004516970
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s0167-7799(03)00030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048025346
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/s0301-4622(01)00229-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045016905
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1021/bp000069a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046427994
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1046/j.1365-2958.2003.03287.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040816514
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.120163297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039276805
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1074/jbc.m201691200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023381517
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1099/00221287-143-1-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030708057
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1099/00221287-147-6-1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060370721
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1099/00221287-148-4-1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060371051
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/aem.67.1.148-154.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028613730
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/aem.68.4.1715-1727.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035032326
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1128/aem.70.1.229-239.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040687530
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1128/aem.71.12.7880-7887.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012714652
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1128/jb.178.1.321-324.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724790
259 rdf:type schema:CreativeWork
260 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
261 schema:name Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, People’s Republic of China
262 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...