Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-05-09

AUTHORS

Shantanu Karkare, Deepak Bhatnagar

ABSTRACT

Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry. More... »

PAGES

575-586

Journal

TITLE

Applied Microbiology and Biotechnology

ISSUE

5

VOLUME

71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2

DOI

http://dx.doi.org/10.1007/s00253-006-0434-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007412287

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16683135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Mimicry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Morpholines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotides, Antisense", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Nucleic Acids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karkare", 
        "givenName": "Shantanu", 
        "id": "sg:person.01310256130.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310256130.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India", 
          "id": "http://www.grid.ac/institutes/grid.412015.3", 
          "name": [
            "School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatnagar", 
        "givenName": "Deepak", 
        "id": "sg:person.0655447022.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655447022.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/73745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007730981", 
          "https://doi.org/10.1038/73745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0596-410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018987799", 
          "https://doi.org/10.1038/nsb0596-410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365566a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004328835", 
          "https://doi.org/10.1038/365566a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0596-615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037714549", 
          "https://doi.org/10.1038/nbt0596-615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5177-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004014317", 
          "https://doi.org/10.1007/978-1-4615-5177-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cr.7290209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029302551", 
          "https://doi.org/10.1038/sj.cr.7290209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0998-857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052207106", 
          "https://doi.org/10.1038/nbt0998-857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0297-98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048564534", 
          "https://doi.org/10.1038/nsb0297-98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/379214a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007959929", 
          "https://doi.org/10.1038/379214a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-05-09", 
    "datePublishedReg": "2006-05-09", 
    "description": "Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00253-006-0434-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "keywords": [
      "nucleic acid analogues", 
      "DNA analogues", 
      "application of PNA", 
      "nucleic acids", 
      "nucleic acid chemistry", 
      "acid analogues", 
      "native nucleic acids", 
      "versatile tool", 
      "acid chemistry", 
      "sugar ring", 
      "neutral charge", 
      "antigene applications", 
      "reaction probes", 
      "high-affinity recognition", 
      "structural types", 
      "phosphodiester backbone", 
      "cytosolic delivery", 
      "extreme stability", 
      "diagnostic applications", 
      "PNA", 
      "analogues", 
      "acid", 
      "ideal candidate", 
      "probe", 
      "chemistry", 
      "nucleobase", 
      "mimics", 
      "backbone", 
      "molecules", 
      "biostability", 
      "ring", 
      "triplexes", 
      "charge", 
      "applications", 
      "stability", 
      "duplex", 
      "RNA recognition", 
      "modification", 
      "DNA", 
      "candidates", 
      "detection", 
      "characteristic features", 
      "form", 
      "delivery", 
      "recombination studies", 
      "assays", 
      "morpholino", 
      "types", 
      "LNA", 
      "advantages", 
      "study", 
      "research assays", 
      "polymerase chain reaction probes", 
      "tool", 
      "biology", 
      "recognition", 
      "antisense", 
      "design", 
      "mutation detection", 
      "limitations", 
      "features", 
      "TaqMan probes", 
      "RNA", 
      "gene cloning", 
      "factors", 
      "cost problem", 
      "hybridization studies", 
      "problem", 
      "therapy", 
      "induction", 
      "implementation", 
      "cloning", 
      "transcription factors", 
      "developmental biology", 
      "target gene induction", 
      "embryos", 
      "microinjection", 
      "gene induction"
    ], 
    "name": "Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino", 
    "pagination": "575-586", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007412287"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-006-0434-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16683135"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-006-0434-2", 
      "https://app.dimensions.ai/details/publication/pub.1007412287"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00253-006-0434-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      119 URIs      102 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-006-0434-2 schema:about N24a297b4d3ef438098d04032e2e85677
2 N27da5c0473b74674a7e38c12aa17f3b8
3 N7fd2b2e5ce844686a8306a55c3379930
4 N9253344cf85f4f6ba94eacc3c746d64f
5 N9c0d06182bb946de94b0e887a4ec5d70
6 Nd00660bb96dc49c8992256746368a65d
7 Nfbd465c56a5e4140af510a949cda70d8
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author Ne4fe2fefeafe434cb51094cd6b62f73a
11 schema:citation sg:pub.10.1007/978-1-4615-5177-5
12 sg:pub.10.1038/365566a0
13 sg:pub.10.1038/379214a0
14 sg:pub.10.1038/73745
15 sg:pub.10.1038/nbt0596-615
16 sg:pub.10.1038/nbt0998-857
17 sg:pub.10.1038/nsb0297-98
18 sg:pub.10.1038/nsb0596-410
19 sg:pub.10.1038/sj.cr.7290209
20 schema:datePublished 2006-05-09
21 schema:datePublishedReg 2006-05-09
22 schema:description Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N17ec68e929d24404b82485f27a50022a
26 Nf571f449fb29496c83ced747a40d4c86
27 sg:journal.1083533
28 schema:keywords DNA
29 DNA analogues
30 LNA
31 PNA
32 RNA
33 RNA recognition
34 TaqMan probes
35 acid
36 acid analogues
37 acid chemistry
38 advantages
39 analogues
40 antigene applications
41 antisense
42 application of PNA
43 applications
44 assays
45 backbone
46 biology
47 biostability
48 candidates
49 characteristic features
50 charge
51 chemistry
52 cloning
53 cost problem
54 cytosolic delivery
55 delivery
56 design
57 detection
58 developmental biology
59 diagnostic applications
60 duplex
61 embryos
62 extreme stability
63 factors
64 features
65 form
66 gene cloning
67 gene induction
68 high-affinity recognition
69 hybridization studies
70 ideal candidate
71 implementation
72 induction
73 limitations
74 microinjection
75 mimics
76 modification
77 molecules
78 morpholino
79 mutation detection
80 native nucleic acids
81 neutral charge
82 nucleic acid analogues
83 nucleic acid chemistry
84 nucleic acids
85 nucleobase
86 phosphodiester backbone
87 polymerase chain reaction probes
88 probe
89 problem
90 reaction probes
91 recognition
92 recombination studies
93 research assays
94 ring
95 stability
96 structural types
97 study
98 sugar ring
99 target gene induction
100 therapy
101 tool
102 transcription factors
103 triplexes
104 types
105 versatile tool
106 schema:name Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino
107 schema:pagination 575-586
108 schema:productId Na7032db8ebd149fe9bc87e59873f0756
109 Nd5e86d7cb25a462f9c8529e96e0191e9
110 Nfb29fb93bc0b427890a8dac3cffa2722
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007412287
112 https://doi.org/10.1007/s00253-006-0434-2
113 schema:sdDatePublished 2022-08-04T16:55
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nef76c1f777d846f6afc2277280cd416e
116 schema:url https://doi.org/10.1007/s00253-006-0434-2
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N17ec68e929d24404b82485f27a50022a schema:issueNumber 5
121 rdf:type schema:PublicationIssue
122 N24a297b4d3ef438098d04032e2e85677 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Peptide Nucleic Acids
124 rdf:type schema:DefinedTerm
125 N27da5c0473b74674a7e38c12aa17f3b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Nucleic Acids
127 rdf:type schema:DefinedTerm
128 N6ba8d2e052d14171833899d505fc7367 rdf:first sg:person.0655447022.75
129 rdf:rest rdf:nil
130 N7fd2b2e5ce844686a8306a55c3379930 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Biotechnology
132 rdf:type schema:DefinedTerm
133 N9253344cf85f4f6ba94eacc3c746d64f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Molecular Mimicry
135 rdf:type schema:DefinedTerm
136 N9c0d06182bb946de94b0e887a4ec5d70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Morpholines
138 rdf:type schema:DefinedTerm
139 Na7032db8ebd149fe9bc87e59873f0756 schema:name dimensions_id
140 schema:value pub.1007412287
141 rdf:type schema:PropertyValue
142 Nd00660bb96dc49c8992256746368a65d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Oligonucleotides, Antisense
144 rdf:type schema:DefinedTerm
145 Nd5e86d7cb25a462f9c8529e96e0191e9 schema:name doi
146 schema:value 10.1007/s00253-006-0434-2
147 rdf:type schema:PropertyValue
148 Ne4fe2fefeafe434cb51094cd6b62f73a rdf:first sg:person.01310256130.18
149 rdf:rest N6ba8d2e052d14171833899d505fc7367
150 Nef76c1f777d846f6afc2277280cd416e schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 Nf571f449fb29496c83ced747a40d4c86 schema:volumeNumber 71
153 rdf:type schema:PublicationVolume
154 Nfb29fb93bc0b427890a8dac3cffa2722 schema:name pubmed_id
155 schema:value 16683135
156 rdf:type schema:PropertyValue
157 Nfbd465c56a5e4140af510a949cda70d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Oligonucleotides
159 rdf:type schema:DefinedTerm
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:journal.1083533 schema:issn 0175-7598
167 1432-0614
168 schema:name Applied Microbiology and Biotechnology
169 schema:publisher Springer Nature
170 rdf:type schema:Periodical
171 sg:person.01310256130.18 schema:affiliation grid-institutes:None
172 schema:familyName Karkare
173 schema:givenName Shantanu
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310256130.18
175 rdf:type schema:Person
176 sg:person.0655447022.75 schema:affiliation grid-institutes:grid.412015.3
177 schema:familyName Bhatnagar
178 schema:givenName Deepak
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655447022.75
180 rdf:type schema:Person
181 sg:pub.10.1007/978-1-4615-5177-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004014317
182 https://doi.org/10.1007/978-1-4615-5177-5
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/365566a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004328835
185 https://doi.org/10.1038/365566a0
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/379214a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007959929
188 https://doi.org/10.1038/379214a0
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/73745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730981
191 https://doi.org/10.1038/73745
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nbt0596-615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037714549
194 https://doi.org/10.1038/nbt0596-615
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nbt0998-857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207106
197 https://doi.org/10.1038/nbt0998-857
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nsb0297-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048564534
200 https://doi.org/10.1038/nsb0297-98
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nsb0596-410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018987799
203 https://doi.org/10.1038/nsb0596-410
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/sj.cr.7290209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029302551
206 https://doi.org/10.1038/sj.cr.7290209
207 rdf:type schema:CreativeWork
208 grid-institutes:None schema:alternateName Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India
209 schema:name Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India
210 rdf:type schema:Organization
211 grid-institutes:grid.412015.3 schema:alternateName School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India
212 schema:name School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...