Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-05-09

AUTHORS

Shantanu Karkare, Deepak Bhatnagar

ABSTRACT

Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry. More... »

PAGES

575-586

Journal

TITLE

Applied Microbiology and Biotechnology

ISSUE

5

VOLUME

71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2

DOI

http://dx.doi.org/10.1007/s00253-006-0434-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007412287

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16683135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Mimicry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Morpholines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotides, Antisense", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptide Nucleic Acids", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karkare", 
        "givenName": "Shantanu", 
        "id": "sg:person.01310256130.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310256130.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India", 
          "id": "http://www.grid.ac/institutes/grid.412015.3", 
          "name": [
            "School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatnagar", 
        "givenName": "Deepak", 
        "id": "sg:person.0655447022.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655447022.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/73745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007730981", 
          "https://doi.org/10.1038/73745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0596-410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018987799", 
          "https://doi.org/10.1038/nsb0596-410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365566a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004328835", 
          "https://doi.org/10.1038/365566a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0596-615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037714549", 
          "https://doi.org/10.1038/nbt0596-615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5177-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004014317", 
          "https://doi.org/10.1007/978-1-4615-5177-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cr.7290209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029302551", 
          "https://doi.org/10.1038/sj.cr.7290209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0998-857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052207106", 
          "https://doi.org/10.1038/nbt0998-857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0297-98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048564534", 
          "https://doi.org/10.1038/nsb0297-98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/379214a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007959929", 
          "https://doi.org/10.1038/379214a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-05-09", 
    "datePublishedReg": "2006-05-09", 
    "description": "Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00253-006-0434-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1083533", 
        "issn": [
          "0175-7598", 
          "1432-0614"
        ], 
        "name": "Applied Microbiology and Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "keywords": [
      "nucleic acid analogues", 
      "DNA analogues", 
      "application of PNA", 
      "nucleic acids", 
      "nucleic acid chemistry", 
      "acid analogues", 
      "native nucleic acids", 
      "versatile tool", 
      "acid chemistry", 
      "sugar ring", 
      "neutral charge", 
      "antigene applications", 
      "reaction probes", 
      "high-affinity recognition", 
      "structural types", 
      "phosphodiester backbone", 
      "cytosolic delivery", 
      "extreme stability", 
      "diagnostic applications", 
      "PNA", 
      "analogues", 
      "acid", 
      "ideal candidate", 
      "probe", 
      "chemistry", 
      "nucleobase", 
      "mimics", 
      "backbone", 
      "molecules", 
      "biostability", 
      "ring", 
      "triplexes", 
      "charge", 
      "applications", 
      "stability", 
      "duplex", 
      "RNA recognition", 
      "modification", 
      "DNA", 
      "candidates", 
      "detection", 
      "characteristic features", 
      "form", 
      "delivery", 
      "recombination studies", 
      "assays", 
      "morpholino", 
      "types", 
      "LNA", 
      "advantages", 
      "study", 
      "research assays", 
      "polymerase chain reaction probes", 
      "tool", 
      "biology", 
      "recognition", 
      "antisense", 
      "design", 
      "mutation detection", 
      "limitations", 
      "features", 
      "TaqMan probes", 
      "RNA", 
      "gene cloning", 
      "factors", 
      "cost problem", 
      "hybridization studies", 
      "problem", 
      "therapy", 
      "induction", 
      "implementation", 
      "cloning", 
      "transcription factors", 
      "developmental biology", 
      "target gene induction", 
      "embryos", 
      "microinjection", 
      "gene induction"
    ], 
    "name": "Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino", 
    "pagination": "575-586", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007412287"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00253-006-0434-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16683135"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00253-006-0434-2", 
      "https://app.dimensions.ai/details/publication/pub.1007412287"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00253-006-0434-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00253-006-0434-2'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      119 URIs      102 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00253-006-0434-2 schema:about N5552a251f9a64aec8c8e2d2b55605af2
2 N619db10ed98541338f12eed387bf7695
3 N62571ec8463b473ca1ba3f961145e092
4 N63376f9691774ce28d4d6545b362a729
5 Nbc81517966d94a24929d49dbf8bf393c
6 Ne80e2c0fc51947408f0239b255c99c38
7 Nf0ccdbea1d10469d8b54a499518c7d6c
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N154cafdcbc8c408b99dfe2e4c1064d0a
11 schema:citation sg:pub.10.1007/978-1-4615-5177-5
12 sg:pub.10.1038/365566a0
13 sg:pub.10.1038/379214a0
14 sg:pub.10.1038/73745
15 sg:pub.10.1038/nbt0596-615
16 sg:pub.10.1038/nbt0998-857
17 sg:pub.10.1038/nsb0297-98
18 sg:pub.10.1038/nsb0596-410
19 sg:pub.10.1038/sj.cr.7290209
20 schema:datePublished 2006-05-09
21 schema:datePublishedReg 2006-05-09
22 schema:description Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N0975853d805d4d639a614d02eb0cb2aa
26 N9f4daf408e8d43038c6629bc85663349
27 sg:journal.1083533
28 schema:keywords DNA
29 DNA analogues
30 LNA
31 PNA
32 RNA
33 RNA recognition
34 TaqMan probes
35 acid
36 acid analogues
37 acid chemistry
38 advantages
39 analogues
40 antigene applications
41 antisense
42 application of PNA
43 applications
44 assays
45 backbone
46 biology
47 biostability
48 candidates
49 characteristic features
50 charge
51 chemistry
52 cloning
53 cost problem
54 cytosolic delivery
55 delivery
56 design
57 detection
58 developmental biology
59 diagnostic applications
60 duplex
61 embryos
62 extreme stability
63 factors
64 features
65 form
66 gene cloning
67 gene induction
68 high-affinity recognition
69 hybridization studies
70 ideal candidate
71 implementation
72 induction
73 limitations
74 microinjection
75 mimics
76 modification
77 molecules
78 morpholino
79 mutation detection
80 native nucleic acids
81 neutral charge
82 nucleic acid analogues
83 nucleic acid chemistry
84 nucleic acids
85 nucleobase
86 phosphodiester backbone
87 polymerase chain reaction probes
88 probe
89 problem
90 reaction probes
91 recognition
92 recombination studies
93 research assays
94 ring
95 stability
96 structural types
97 study
98 sugar ring
99 target gene induction
100 therapy
101 tool
102 transcription factors
103 triplexes
104 types
105 versatile tool
106 schema:name Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino
107 schema:pagination 575-586
108 schema:productId N63f23fd96b8045c687facc473c3c1c5b
109 N80a948a9f7744ba8a845c24c8df57af2
110 Nb6555cf650834a6888a8033b22de9ae4
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007412287
112 https://doi.org/10.1007/s00253-006-0434-2
113 schema:sdDatePublished 2022-08-04T16:55
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nf7c86469ca2f4a2dba9a1f04bdcde9b8
116 schema:url https://doi.org/10.1007/s00253-006-0434-2
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N0975853d805d4d639a614d02eb0cb2aa schema:issueNumber 5
121 rdf:type schema:PublicationIssue
122 N154cafdcbc8c408b99dfe2e4c1064d0a rdf:first sg:person.01310256130.18
123 rdf:rest N311a50ecfc1e45a0a43f55f0ec4591ad
124 N311a50ecfc1e45a0a43f55f0ec4591ad rdf:first sg:person.0655447022.75
125 rdf:rest rdf:nil
126 N5552a251f9a64aec8c8e2d2b55605af2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Biotechnology
128 rdf:type schema:DefinedTerm
129 N619db10ed98541338f12eed387bf7695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Morpholines
131 rdf:type schema:DefinedTerm
132 N62571ec8463b473ca1ba3f961145e092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Molecular Mimicry
134 rdf:type schema:DefinedTerm
135 N63376f9691774ce28d4d6545b362a729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Oligonucleotides, Antisense
137 rdf:type schema:DefinedTerm
138 N63f23fd96b8045c687facc473c3c1c5b schema:name doi
139 schema:value 10.1007/s00253-006-0434-2
140 rdf:type schema:PropertyValue
141 N80a948a9f7744ba8a845c24c8df57af2 schema:name pubmed_id
142 schema:value 16683135
143 rdf:type schema:PropertyValue
144 N9f4daf408e8d43038c6629bc85663349 schema:volumeNumber 71
145 rdf:type schema:PublicationVolume
146 Nb6555cf650834a6888a8033b22de9ae4 schema:name dimensions_id
147 schema:value pub.1007412287
148 rdf:type schema:PropertyValue
149 Nbc81517966d94a24929d49dbf8bf393c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Peptide Nucleic Acids
151 rdf:type schema:DefinedTerm
152 Ne80e2c0fc51947408f0239b255c99c38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Oligonucleotides
154 rdf:type schema:DefinedTerm
155 Nf0ccdbea1d10469d8b54a499518c7d6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Nucleic Acids
157 rdf:type schema:DefinedTerm
158 Nf7c86469ca2f4a2dba9a1f04bdcde9b8 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:journal.1083533 schema:issn 0175-7598
167 1432-0614
168 schema:name Applied Microbiology and Biotechnology
169 schema:publisher Springer Nature
170 rdf:type schema:Periodical
171 sg:person.01310256130.18 schema:affiliation grid-institutes:None
172 schema:familyName Karkare
173 schema:givenName Shantanu
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310256130.18
175 rdf:type schema:Person
176 sg:person.0655447022.75 schema:affiliation grid-institutes:grid.412015.3
177 schema:familyName Bhatnagar
178 schema:givenName Deepak
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655447022.75
180 rdf:type schema:Person
181 sg:pub.10.1007/978-1-4615-5177-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004014317
182 https://doi.org/10.1007/978-1-4615-5177-5
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/365566a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004328835
185 https://doi.org/10.1038/365566a0
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/379214a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007959929
188 https://doi.org/10.1038/379214a0
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/73745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730981
191 https://doi.org/10.1038/73745
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nbt0596-615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037714549
194 https://doi.org/10.1038/nbt0596-615
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nbt0998-857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207106
197 https://doi.org/10.1038/nbt0998-857
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nsb0297-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048564534
200 https://doi.org/10.1038/nsb0297-98
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nsb0596-410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018987799
203 https://doi.org/10.1038/nsb0596-410
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/sj.cr.7290209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029302551
206 https://doi.org/10.1038/sj.cr.7290209
207 rdf:type schema:CreativeWork
208 grid-institutes:None schema:alternateName Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India
209 schema:name Apticraft Systems (P) Ltd. 142, Electronics Complex, 452010, Indore, India
210 rdf:type schema:Organization
211 grid-institutes:grid.412015.3 schema:alternateName School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India
212 schema:name School of Biochemistry, Devi Ahilya University, Khandwa Road, 452017, Indore, India
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...