Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-10

AUTHORS

Paola Carrillo-Bustamante, Rob J. de Boer, Can Keşmir

ABSTRACT

The activity of natural killer (NK) cells is tightly regulated by inhibitory and activating receptors. Inhibitory killer immunoglobulin-like receptors (iKIRs) survey the surface of target cells by monitoring the expression of human leukocyte antigen (HLA) class I. The binding of iKIRs has been shown to be sensitive to the peptides presented by HLA class I, implying that iKIRs have the ability to detect the changes in the repertoire of peptide-HLA class I complexes (pHLA), a process occurring during viral infection and in tumor cells. To study how the pHLA repertoire changes upon infection, and whether an iKIR is able to detect these changes, we study peptides eluted from cells prior and after infection with measles virus (MV). Remarkably, most changes in the repertoire of potential iKIR ligands are predicted to be caused by the altered expression of self-peptides. We show that an iKIR can detect these changes in the presented peptides only if it is sufficiently specific, e.g., if iKIRs can distinguish between different amino acids in the contact residues (e.g., position 7 and 8). Our analysis further indicates that one single iKIR per host is not sufficient to detect changes in the peptide repertoire, suggesting that a multigene family encoding for different iKIRs is required for successful peptide recognition. More... »

PAGES

87-97

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00251-017-1019-1

DOI

http://dx.doi.org/10.1007/s00251-017-1019-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090585479

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28695292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histocompatibility Antigens Class I", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Killer Cells, Natural", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ligands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Measles virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, KIR", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Modeling and Simulation in the Biosciences (BIOMS/IWR), Max Planck Institute, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands", 
            "Center for Modeling and Simulation in the Biosciences (BIOMS/IWR), Max Planck Institute, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrillo-Bustamante", 
        "givenName": "Paola", 
        "id": "sg:person.0670467315.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670467315.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ke\u015fmir", 
        "givenName": "Can", 
        "id": "sg:person.01173000123.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nri2835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042145693", 
          "https://doi.org/10.1038/nri2835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043615325", 
          "https://doi.org/10.1038/ni1582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021488692", 
          "https://doi.org/10.1038/nature10237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35014520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039997038", 
          "https://doi.org/10.1038/35014520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-016-0288-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016862085", 
          "https://doi.org/10.1186/s13073-016-0288-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/87766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008531433", 
          "https://doi.org/10.1038/87766"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-10", 
    "datePublishedReg": "2017-07-10", 
    "description": "The activity of natural killer (NK) cells is tightly regulated by inhibitory and activating receptors. Inhibitory killer immunoglobulin-like receptors (iKIRs) survey the surface of target cells by monitoring the expression of human leukocyte antigen (HLA) class I. The binding of iKIRs has been shown to be sensitive to the peptides presented by HLA class I, implying that iKIRs have the ability to detect the changes in the repertoire of peptide-HLA class I complexes (pHLA), a process occurring during viral infection and in tumor cells. To study how the pHLA repertoire changes upon infection, and whether an iKIR is able to detect these changes, we study peptides eluted from cells prior and after infection with measles virus (MV). Remarkably, most changes in the repertoire of potential iKIR ligands are predicted to be caused by the altered expression of self-peptides. We show that an iKIR can detect these changes in the presented peptides only if it is sufficiently specific, e.g., if iKIRs can distinguish between different amino acids in the contact residues (e.g., position 7 and 8). Our analysis further indicates that one single iKIR per host is not sufficient to detect changes in the peptide repertoire, suggesting that a multigene family encoding for different iKIRs is required for successful peptide recognition.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00251-017-1019-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4110885", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1019755", 
        "issn": [
          "0093-7711", 
          "1432-1211"
        ], 
        "name": "Immunogenetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "keywords": [
      "inhibitory killer immunoglobulin-like receptors", 
      "human leukocyte antigen (HLA) class I.", 
      "measles virus", 
      "killer immunoglobulin-like receptors", 
      "class I", 
      "natural killer cells", 
      "immunoglobulin-like receptors", 
      "HLA class I", 
      "inhibitory KIR", 
      "NK cells", 
      "killer cells", 
      "activating receptors", 
      "viral infection", 
      "tumor cells", 
      "presented peptides", 
      "target cells", 
      "infection", 
      "altered expression", 
      "peptide repertoire", 
      "class I.", 
      "peptide-HLA class I", 
      "receptors", 
      "cells", 
      "peptides", 
      "contact residues", 
      "expression", 
      "peptide recognition", 
      "most changes", 
      "KIR", 
      "inhibitory", 
      "repertoire", 
      "virus", 
      "amino acids", 
      "changes", 
      "different amino acids", 
      "PHLA", 
      "specificity", 
      "activity", 
      "binding", 
      "acid", 
      "host", 
      "family", 
      "i.", 
      "ability", 
      "analysis", 
      "ligands", 
      "recognition", 
      "multigene family", 
      "residues", 
      "process", 
      "environment", 
      "peptide environment", 
      "surface"
    ], 
    "name": "Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment", 
    "pagination": "87-97", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090585479"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00251-017-1019-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28695292"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00251-017-1019-1", 
      "https://app.dimensions.ai/details/publication/pub.1090585479"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00251-017-1019-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00251-017-1019-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00251-017-1019-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00251-017-1019-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00251-017-1019-1'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      93 URIs      79 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00251-017-1019-1 schema:about N190bf95642c741d5ae6bb65c86d91adf
2 N27d60d8db05c4fa99aa1ecdf95e092c4
3 N3b3989b156b14fffa9142aea34574200
4 N7887acd86b014e4186613acf6cd3dc7e
5 Nc1f1260360bb43048dc7de37376586ff
6 Nc20862fa33e24860ab438d4bb7580d8e
7 Ne2eeeda50562444880750c3800c54532
8 Neb4e882d010d4d7d90dffc597a88ff16
9 Nfa447db7f3ac43e8839f0faa7c6fb342
10 anzsrc-for:11
11 anzsrc-for:1107
12 schema:author N2c14f3a7f19540f0b4112c6f61bc43f0
13 schema:citation sg:pub.10.1038/35014520
14 sg:pub.10.1038/87766
15 sg:pub.10.1038/nature10237
16 sg:pub.10.1038/ni1582
17 sg:pub.10.1038/nri2835
18 sg:pub.10.1186/s13073-016-0288-x
19 schema:datePublished 2017-07-10
20 schema:datePublishedReg 2017-07-10
21 schema:description The activity of natural killer (NK) cells is tightly regulated by inhibitory and activating receptors. Inhibitory killer immunoglobulin-like receptors (iKIRs) survey the surface of target cells by monitoring the expression of human leukocyte antigen (HLA) class I. The binding of iKIRs has been shown to be sensitive to the peptides presented by HLA class I, implying that iKIRs have the ability to detect the changes in the repertoire of peptide-HLA class I complexes (pHLA), a process occurring during viral infection and in tumor cells. To study how the pHLA repertoire changes upon infection, and whether an iKIR is able to detect these changes, we study peptides eluted from cells prior and after infection with measles virus (MV). Remarkably, most changes in the repertoire of potential iKIR ligands are predicted to be caused by the altered expression of self-peptides. We show that an iKIR can detect these changes in the presented peptides only if it is sufficiently specific, e.g., if iKIRs can distinguish between different amino acids in the contact residues (e.g., position 7 and 8). Our analysis further indicates that one single iKIR per host is not sufficient to detect changes in the peptide repertoire, suggesting that a multigene family encoding for different iKIRs is required for successful peptide recognition.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N79730f2dc2db415fa64a84064b190d5e
25 Ne93c370bedf84acabb9a656aac50cf1b
26 sg:journal.1019755
27 schema:keywords HLA class I
28 KIR
29 NK cells
30 PHLA
31 ability
32 acid
33 activating receptors
34 activity
35 altered expression
36 amino acids
37 analysis
38 binding
39 cells
40 changes
41 class I
42 class I.
43 contact residues
44 different amino acids
45 environment
46 expression
47 family
48 host
49 human leukocyte antigen (HLA) class I.
50 i.
51 immunoglobulin-like receptors
52 infection
53 inhibitory
54 inhibitory KIR
55 inhibitory killer immunoglobulin-like receptors
56 killer cells
57 killer immunoglobulin-like receptors
58 ligands
59 measles virus
60 most changes
61 multigene family
62 natural killer cells
63 peptide environment
64 peptide recognition
65 peptide repertoire
66 peptide-HLA class I
67 peptides
68 presented peptides
69 process
70 receptors
71 recognition
72 repertoire
73 residues
74 specificity
75 surface
76 target cells
77 tumor cells
78 viral infection
79 virus
80 schema:name Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment
81 schema:pagination 87-97
82 schema:productId N1346b098bdb8434fadc30c50beb53abb
83 N4c90c39cb9954911a9de23bc56f704ac
84 Nc155b52a0b5441dea5fe363d5c861249
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090585479
86 https://doi.org/10.1007/s00251-017-1019-1
87 schema:sdDatePublished 2022-09-02T16:01
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N4176d4fd0cfb47669837d13f17a61852
90 schema:url https://doi.org/10.1007/s00251-017-1019-1
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N05fde88f0d0342a09cec501ff07e57c9 rdf:first sg:person.0774503452.97
95 rdf:rest Na3c3758146a74c27ae1f8962527e03b8
96 N1346b098bdb8434fadc30c50beb53abb schema:name doi
97 schema:value 10.1007/s00251-017-1019-1
98 rdf:type schema:PropertyValue
99 N190bf95642c741d5ae6bb65c86d91adf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N27d60d8db05c4fa99aa1ecdf95e092c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Measles virus
104 rdf:type schema:DefinedTerm
105 N2c14f3a7f19540f0b4112c6f61bc43f0 rdf:first sg:person.0670467315.07
106 rdf:rest N05fde88f0d0342a09cec501ff07e57c9
107 N3b3989b156b14fffa9142aea34574200 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Peptides
109 rdf:type schema:DefinedTerm
110 N4176d4fd0cfb47669837d13f17a61852 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N4c90c39cb9954911a9de23bc56f704ac schema:name pubmed_id
113 schema:value 28695292
114 rdf:type schema:PropertyValue
115 N7887acd86b014e4186613acf6cd3dc7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Amino Acids
117 rdf:type schema:DefinedTerm
118 N79730f2dc2db415fa64a84064b190d5e schema:volumeNumber 70
119 rdf:type schema:PublicationVolume
120 Na3c3758146a74c27ae1f8962527e03b8 rdf:first sg:person.01173000123.16
121 rdf:rest rdf:nil
122 Nc155b52a0b5441dea5fe363d5c861249 schema:name dimensions_id
123 schema:value pub.1090585479
124 rdf:type schema:PropertyValue
125 Nc1f1260360bb43048dc7de37376586ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Ligands
127 rdf:type schema:DefinedTerm
128 Nc20862fa33e24860ab438d4bb7580d8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Histocompatibility Antigens Class I
130 rdf:type schema:DefinedTerm
131 Ne2eeeda50562444880750c3800c54532 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Killer Cells, Natural
133 rdf:type schema:DefinedTerm
134 Ne93c370bedf84acabb9a656aac50cf1b schema:issueNumber 2
135 rdf:type schema:PublicationIssue
136 Neb4e882d010d4d7d90dffc597a88ff16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Computer Simulation
138 rdf:type schema:DefinedTerm
139 Nfa447db7f3ac43e8839f0faa7c6fb342 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Receptors, KIR
141 rdf:type schema:DefinedTerm
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
146 schema:name Immunology
147 rdf:type schema:DefinedTerm
148 sg:grant.4110885 http://pending.schema.org/fundedItem sg:pub.10.1007/s00251-017-1019-1
149 rdf:type schema:MonetaryGrant
150 sg:journal.1019755 schema:issn 0093-7711
151 1432-1211
152 schema:name Immunogenetics
153 schema:publisher Springer Nature
154 rdf:type schema:Periodical
155 sg:person.01173000123.16 schema:affiliation grid-institutes:grid.5477.1
156 schema:familyName Keşmir
157 schema:givenName Can
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16
159 rdf:type schema:Person
160 sg:person.0670467315.07 schema:affiliation grid-institutes:grid.4372.2
161 schema:familyName Carrillo-Bustamante
162 schema:givenName Paola
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670467315.07
164 rdf:type schema:Person
165 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
166 schema:familyName de Boer
167 schema:givenName Rob J.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
169 rdf:type schema:Person
170 sg:pub.10.1038/35014520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039997038
171 https://doi.org/10.1038/35014520
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/87766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008531433
174 https://doi.org/10.1038/87766
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature10237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488692
177 https://doi.org/10.1038/nature10237
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ni1582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043615325
180 https://doi.org/10.1038/ni1582
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nri2835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042145693
183 https://doi.org/10.1038/nri2835
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/s13073-016-0288-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016862085
186 https://doi.org/10.1186/s13073-016-0288-x
187 rdf:type schema:CreativeWork
188 grid-institutes:grid.4372.2 schema:alternateName Center for Modeling and Simulation in the Biosciences (BIOMS/IWR), Max Planck Institute, Heidelberg, Germany
189 schema:name Center for Modeling and Simulation in the Biosciences (BIOMS/IWR), Max Planck Institute, Heidelberg, Germany
190 Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
191 rdf:type schema:Organization
192 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
193 schema:name Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...