Discriminating self from nonself with short peptides from large proteomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-07-30

AUTHORS

Nigel J. Burroughs, Rob J. de Boer, Can Keşmir

ABSTRACT

We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 107 distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides. More... »

PAGES

311-320

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00251-004-0691-0

DOI

http://dx.doi.org/10.1007/s00251-004-0691-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010503541

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15322777


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antigen Presentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Autoantigens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligopeptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Self Tolerance", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematics Institute, University of Warwick, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Mathematics Institute, University of Warwick, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burroughs", 
        "givenName": "Nigel J.", 
        "id": "sg:person.01311111721.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311111721.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
            "Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ke\u015fmir", 
        "givenName": "Can", 
        "id": "sg:person.01173000123.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00251-002-0530-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075262558", 
          "https://doi.org/10.1007/s00251-002-0530-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002510050595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019170092", 
          "https://doi.org/10.1007/s002510050595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039246765", 
          "https://doi.org/10.1038/nature02240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/80852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017942471", 
          "https://doi.org/10.1038/80852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri1250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051956469", 
          "https://doi.org/10.1038/nri1250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00251-003-0585-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024604254", 
          "https://doi.org/10.1007/s00251-003-0585-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-07-30", 
    "datePublishedReg": "2004-07-30", 
    "description": "We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class\u00a0I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 107 distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class\u00a0I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00251-004-0691-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4698251", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1019755", 
        "issn": [
          "0093-7711", 
          "1432-1211"
        ], 
        "name": "Immunogenetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "MHC class", 
      "foreign peptides", 
      "antigen presentation", 
      "HLA molecules", 
      "self peptides", 
      "nonself peptides", 
      "HLA", 
      "MHC", 
      "presentation", 
      "anchor residues", 
      "amino acids", 
      "peptides", 
      "nonself discrimination", 
      "nonself", 
      "variety of microorganisms", 
      "alleles", 
      "short peptides", 
      "immunoproteasome", 
      "TCR", 
      "sufficient information", 
      "acid", 
      "proteome", 
      "significant loss", 
      "overlap", 
      "protein", 
      "cases", 
      "loss", 
      "human proteome", 
      "binds", 
      "large proteomes", 
      "information", 
      "discrimination", 
      "number", 
      "self", 
      "tap", 
      "results", 
      "microorganisms", 
      "variety", 
      "molecules", 
      "preferences", 
      "class", 
      "average overlap", 
      "probability", 
      "small preference", 
      "residues", 
      "human self"
    ], 
    "name": "Discriminating self from nonself with short peptides from large proteomes", 
    "pagination": "311-320", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010503541"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00251-004-0691-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15322777"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00251-004-0691-0", 
      "https://app.dimensions.ai/details/publication/pub.1010503541"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_393.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00251-004-0691-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00251-004-0691-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00251-004-0691-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00251-004-0691-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00251-004-0691-0'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      83 URIs      69 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00251-004-0691-0 schema:about N65e0b141a80342639b3b33ac94d8d639
2 N73574219ace44bb3b2c190f86657762d
3 N8abab6fb7c7446f3a0feea87922b40fe
4 Nd12d0817a51c47eba2741360361b6ec5
5 Ne8763d04272244769596bd7a88ddbb05
6 Nf56d4d2355594ca48214324e0d6b0128
7 anzsrc-for:11
8 anzsrc-for:1107
9 schema:author N8f4dc049a2e5455c9bcd5abb09a1093e
10 schema:citation sg:pub.10.1007/s00251-002-0530-0
11 sg:pub.10.1007/s00251-003-0585-6
12 sg:pub.10.1007/s002510050595
13 sg:pub.10.1038/80852
14 sg:pub.10.1038/nature02240
15 sg:pub.10.1038/nri1250
16 schema:datePublished 2004-07-30
17 schema:datePublishedReg 2004-07-30
18 schema:description We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 107 distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N21947b8bdbcb4a2cb7c864aab89348d8
22 N2b18e38d24824d32a0a93165267ebfd3
23 sg:journal.1019755
24 schema:keywords HLA
25 HLA molecules
26 MHC
27 MHC class
28 TCR
29 acid
30 alleles
31 amino acids
32 anchor residues
33 antigen presentation
34 average overlap
35 binds
36 cases
37 class
38 discrimination
39 foreign peptides
40 human proteome
41 human self
42 immunoproteasome
43 information
44 large proteomes
45 loss
46 microorganisms
47 molecules
48 nonself
49 nonself discrimination
50 nonself peptides
51 number
52 overlap
53 peptides
54 preferences
55 presentation
56 probability
57 protein
58 proteome
59 residues
60 results
61 self
62 self peptides
63 short peptides
64 significant loss
65 small preference
66 sufficient information
67 tap
68 variety
69 variety of microorganisms
70 schema:name Discriminating self from nonself with short peptides from large proteomes
71 schema:pagination 311-320
72 schema:productId N0b0881c4c02040eaba8998ca1c6ed044
73 Nb2e8ca32839f44b1a457ab8b43124bc8
74 Nc372d965af8940e39a629b53f85915f7
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010503541
76 https://doi.org/10.1007/s00251-004-0691-0
77 schema:sdDatePublished 2022-09-02T15:50
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N2e9d12de864d4ba8b94a56cb0e7476d7
80 schema:url https://doi.org/10.1007/s00251-004-0691-0
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0b0881c4c02040eaba8998ca1c6ed044 schema:name pubmed_id
85 schema:value 15322777
86 rdf:type schema:PropertyValue
87 N21947b8bdbcb4a2cb7c864aab89348d8 schema:volumeNumber 56
88 rdf:type schema:PublicationVolume
89 N2b18e38d24824d32a0a93165267ebfd3 schema:issueNumber 5
90 rdf:type schema:PublicationIssue
91 N2e9d12de864d4ba8b94a56cb0e7476d7 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N5fecbf4ad24e445fbd3798a9e9c64cc1 rdf:first sg:person.0774503452.97
94 rdf:rest N92fda3e42b87431aabef80e971f69d6e
95 N65e0b141a80342639b3b33ac94d8d639 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Self Tolerance
97 rdf:type schema:DefinedTerm
98 N73574219ace44bb3b2c190f86657762d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Humans
100 rdf:type schema:DefinedTerm
101 N8abab6fb7c7446f3a0feea87922b40fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Antigen Presentation
103 rdf:type schema:DefinedTerm
104 N8f4dc049a2e5455c9bcd5abb09a1093e rdf:first sg:person.01311111721.77
105 rdf:rest N5fecbf4ad24e445fbd3798a9e9c64cc1
106 N92fda3e42b87431aabef80e971f69d6e rdf:first sg:person.01173000123.16
107 rdf:rest rdf:nil
108 Nb2e8ca32839f44b1a457ab8b43124bc8 schema:name doi
109 schema:value 10.1007/s00251-004-0691-0
110 rdf:type schema:PropertyValue
111 Nc372d965af8940e39a629b53f85915f7 schema:name dimensions_id
112 schema:value pub.1010503541
113 rdf:type schema:PropertyValue
114 Nd12d0817a51c47eba2741360361b6ec5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Proteome
116 rdf:type schema:DefinedTerm
117 Ne8763d04272244769596bd7a88ddbb05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Oligopeptides
119 rdf:type schema:DefinedTerm
120 Nf56d4d2355594ca48214324e0d6b0128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Autoantigens
122 rdf:type schema:DefinedTerm
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
127 schema:name Immunology
128 rdf:type schema:DefinedTerm
129 sg:grant.4698251 http://pending.schema.org/fundedItem sg:pub.10.1007/s00251-004-0691-0
130 rdf:type schema:MonetaryGrant
131 sg:journal.1019755 schema:issn 0093-7711
132 1432-1211
133 schema:name Immunogenetics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01173000123.16 schema:affiliation grid-institutes:grid.5170.3
137 schema:familyName Keşmir
138 schema:givenName Can
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16
140 rdf:type schema:Person
141 sg:person.01311111721.77 schema:affiliation grid-institutes:grid.7372.1
142 schema:familyName Burroughs
143 schema:givenName Nigel J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311111721.77
145 rdf:type schema:Person
146 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
147 schema:familyName de Boer
148 schema:givenName Rob J.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
150 rdf:type schema:Person
151 sg:pub.10.1007/s00251-002-0530-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075262558
152 https://doi.org/10.1007/s00251-002-0530-0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00251-003-0585-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024604254
155 https://doi.org/10.1007/s00251-003-0585-6
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s002510050595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170092
158 https://doi.org/10.1007/s002510050595
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/80852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017942471
161 https://doi.org/10.1038/80852
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature02240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039246765
164 https://doi.org/10.1038/nature02240
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nri1250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051956469
167 https://doi.org/10.1038/nri1250
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.5170.3 schema:alternateName Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
170 schema:name Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
171 Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
172 rdf:type schema:Organization
173 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
174 schema:name Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
175 rdf:type schema:Organization
176 grid-institutes:grid.7372.1 schema:alternateName Mathematics Institute, University of Warwick, Coventry, UK
177 schema:name Mathematics Institute, University of Warwick, Coventry, UK
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...