MHC polymorphism under host-pathogen coevolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-01-13

AUTHORS

José A. M. Borghans, Joost B. Beltman, Rob J. De Boer

ABSTRACT

The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change. More... »

PAGES

732-739

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00251-003-0630-5

DOI

http://dx.doi.org/10.1007/s00251-003-0630-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039971750

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14722687


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Host-Parasite Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Major Histocompatibility Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clinical Viro-Immunology, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.417732.4", 
          "name": [
            "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
            "Biologie des Populations Lymphocytaires, Institut Pasteur, 25\u201328 Rue du Dr Roux, 75015, Paris, France", 
            "Clinical Viro-Immunology, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borghans", 
        "givenName": "Jos\u00e9 A. M.", 
        "id": "sg:person.01155473643.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155473643.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beltman", 
        "givenName": "Joost B.", 
        "id": "sg:person.01124356136.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124356136.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/237139a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029056419", 
          "https://doi.org/10.1038/237139a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335268a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013817676", 
          "https://doi.org/10.1038/335268a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/256050a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023608866", 
          "https://doi.org/10.1038/256050a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036264730", 
          "https://doi.org/10.1038/35015069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335167a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035888295", 
          "https://doi.org/10.1038/335167a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051420195", 
          "https://doi.org/10.1007/bf00275918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/352595a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026629339", 
          "https://doi.org/10.1038/352595a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00275931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045142998", 
          "https://doi.org/10.1007/bf00275931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00251-003-0629-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016761071", 
          "https://doi.org/10.1007/s00251-003-0629-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005333126", 
          "https://doi.org/10.1038/nm893"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01-13", 
    "datePublishedReg": "2004-01-13", 
    "description": "The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00251-003-0630-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1019755", 
        "issn": [
          "0093-7711", 
          "1432-1211"
        ], 
        "name": "Immunogenetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "host-pathogen coevolution", 
      "rare MHC alleles", 
      "host populations", 
      "MHC polymorphism", 
      "selective pressure", 
      "MHC alleles", 
      "large host populations", 
      "host generations", 
      "protection of hosts", 
      "common MHC alleles", 
      "heterozygote advantage", 
      "MHC loci", 
      "coevolution", 
      "polymorphic genes", 
      "heterozygous hosts", 
      "alleles", 
      "allele frequencies", 
      "genes", 
      "polymorphism", 
      "pathogens", 
      "host", 
      "vertebrates", 
      "important role", 
      "major histocompatibility molecules", 
      "histocompatibility molecules", 
      "loci", 
      "immune response", 
      "population", 
      "evolution", 
      "molecules", 
      "MHC molecules", 
      "selection", 
      "high degree", 
      "large variety", 
      "induction", 
      "relative impact", 
      "large set", 
      "mechanism", 
      "role", 
      "MHC", 
      "response", 
      "variety", 
      "protection", 
      "generation", 
      "impact", 
      "set", 
      "fact", 
      "degree", 
      "frequency", 
      "hand", 
      "advantages", 
      "computer simulations", 
      "pressure", 
      "terms", 
      "simulations", 
      "presentation"
    ], 
    "name": "MHC polymorphism under host-pathogen coevolution", 
    "pagination": "732-739", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039971750"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00251-003-0630-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14722687"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00251-003-0630-5", 
      "https://app.dimensions.ai/details/publication/pub.1039971750"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_392.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00251-003-0630-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0630-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0630-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0630-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0630-5'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      99 URIs      81 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00251-003-0630-5 schema:about N0449668aa5ce46feb80c85a24500ee7f
2 N11588cd3b63c49f9a80c99a883ce0aca
3 N3618233141714d58aa03164731e00d1d
4 N3d6677aa79824da08b740e43e91f4396
5 N6d827e8a0290479292eae7f1736dc503
6 Nb0204dd35fb14864a2449c64f2d620c0
7 Nb15b966fe729479d913ff3f793dd6a72
8 Nd85768c63e85435dbb68c4946d0b995b
9 anzsrc-for:11
10 anzsrc-for:1107
11 schema:author Nd5daf387ec1f47f088d6512017d66fc1
12 schema:citation sg:pub.10.1007/bf00275918
13 sg:pub.10.1007/bf00275931
14 sg:pub.10.1007/s00251-003-0629-y
15 sg:pub.10.1038/237139a0
16 sg:pub.10.1038/256050a0
17 sg:pub.10.1038/335167a0
18 sg:pub.10.1038/335268a0
19 sg:pub.10.1038/35015069
20 sg:pub.10.1038/352595a0
21 sg:pub.10.1038/nm893
22 schema:datePublished 2004-01-13
23 schema:datePublishedReg 2004-01-13
24 schema:description The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N41e4d289f4504689860074399291f237
28 Nc7874182b2d443f2a414e3d93c358c57
29 sg:journal.1019755
30 schema:keywords MHC
31 MHC alleles
32 MHC loci
33 MHC molecules
34 MHC polymorphism
35 advantages
36 allele frequencies
37 alleles
38 coevolution
39 common MHC alleles
40 computer simulations
41 degree
42 evolution
43 fact
44 frequency
45 generation
46 genes
47 hand
48 heterozygote advantage
49 heterozygous hosts
50 high degree
51 histocompatibility molecules
52 host
53 host generations
54 host populations
55 host-pathogen coevolution
56 immune response
57 impact
58 important role
59 induction
60 large host populations
61 large set
62 large variety
63 loci
64 major histocompatibility molecules
65 mechanism
66 molecules
67 pathogens
68 polymorphic genes
69 polymorphism
70 population
71 presentation
72 pressure
73 protection
74 protection of hosts
75 rare MHC alleles
76 relative impact
77 response
78 role
79 selection
80 selective pressure
81 set
82 simulations
83 terms
84 variety
85 vertebrates
86 schema:name MHC polymorphism under host-pathogen coevolution
87 schema:pagination 732-739
88 schema:productId N09905e71e0034290b9f0038e0aa294a0
89 N371c9a1eafaa488abb6ea80282cb3a96
90 N5079b1535ffc4e1a9aa136d53600d2d5
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039971750
92 https://doi.org/10.1007/s00251-003-0630-5
93 schema:sdDatePublished 2022-09-02T15:50
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Ne61cbcf16b394ca59525afb3c8210d53
96 schema:url https://doi.org/10.1007/s00251-003-0630-5
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0449668aa5ce46feb80c85a24500ee7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Polymorphism, Genetic
102 rdf:type schema:DefinedTerm
103 N09905e71e0034290b9f0038e0aa294a0 schema:name doi
104 schema:value 10.1007/s00251-003-0630-5
105 rdf:type schema:PropertyValue
106 N11588cd3b63c49f9a80c99a883ce0aca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Humans
108 rdf:type schema:DefinedTerm
109 N3618233141714d58aa03164731e00d1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Major Histocompatibility Complex
111 rdf:type schema:DefinedTerm
112 N371c9a1eafaa488abb6ea80282cb3a96 schema:name dimensions_id
113 schema:value pub.1039971750
114 rdf:type schema:PropertyValue
115 N3d6677aa79824da08b740e43e91f4396 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Computer Simulation
117 rdf:type schema:DefinedTerm
118 N41e4d289f4504689860074399291f237 schema:issueNumber 11
119 rdf:type schema:PublicationIssue
120 N4b20e157e87c44d692ec9d3ddfa33212 rdf:first sg:person.0774503452.97
121 rdf:rest rdf:nil
122 N5079b1535ffc4e1a9aa136d53600d2d5 schema:name pubmed_id
123 schema:value 14722687
124 rdf:type schema:PropertyValue
125 N6d827e8a0290479292eae7f1736dc503 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Frequency
127 rdf:type schema:DefinedTerm
128 Nb0204dd35fb14864a2449c64f2d620c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Host-Parasite Interactions
130 rdf:type schema:DefinedTerm
131 Nb15b966fe729479d913ff3f793dd6a72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Models, Genetic
133 rdf:type schema:DefinedTerm
134 Nc7874182b2d443f2a414e3d93c358c57 schema:volumeNumber 55
135 rdf:type schema:PublicationVolume
136 Nd5daf387ec1f47f088d6512017d66fc1 rdf:first sg:person.01155473643.61
137 rdf:rest Ne4dfc43f2fa246039fd19ab651fa5a71
138 Nd85768c63e85435dbb68c4946d0b995b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Evolution, Molecular
140 rdf:type schema:DefinedTerm
141 Ne4dfc43f2fa246039fd19ab651fa5a71 rdf:first sg:person.01124356136.09
142 rdf:rest N4b20e157e87c44d692ec9d3ddfa33212
143 Ne61cbcf16b394ca59525afb3c8210d53 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
149 schema:name Immunology
150 rdf:type schema:DefinedTerm
151 sg:journal.1019755 schema:issn 0093-7711
152 1432-1211
153 schema:name Immunogenetics
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01124356136.09 schema:affiliation grid-institutes:grid.5477.1
157 schema:familyName Beltman
158 schema:givenName Joost B.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124356136.09
160 rdf:type schema:Person
161 sg:person.01155473643.61 schema:affiliation grid-institutes:grid.417732.4
162 schema:familyName Borghans
163 schema:givenName José A. M.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155473643.61
165 rdf:type schema:Person
166 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
167 schema:familyName De Boer
168 schema:givenName Rob J.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
170 rdf:type schema:Person
171 sg:pub.10.1007/bf00275918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051420195
172 https://doi.org/10.1007/bf00275918
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf00275931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045142998
175 https://doi.org/10.1007/bf00275931
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00251-003-0629-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016761071
178 https://doi.org/10.1007/s00251-003-0629-y
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/237139a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029056419
181 https://doi.org/10.1038/237139a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/256050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023608866
184 https://doi.org/10.1038/256050a0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/335167a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035888295
187 https://doi.org/10.1038/335167a0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/335268a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013817676
190 https://doi.org/10.1038/335268a0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/35015069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036264730
193 https://doi.org/10.1038/35015069
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/352595a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026629339
196 https://doi.org/10.1038/352595a0
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nm893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005333126
199 https://doi.org/10.1038/nm893
200 rdf:type schema:CreativeWork
201 grid-institutes:grid.417732.4 schema:alternateName Clinical Viro-Immunology, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
202 schema:name Biologie des Populations Lymphocytaires, Institut Pasteur, 25–28 Rue du Dr Roux, 75015, Paris, France
203 Clinical Viro-Immunology, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
204 Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
205 rdf:type schema:Organization
206 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
207 schema:name Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...