Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-08-30

AUTHORS

Can Kesmir, Vera van Noort, Rob J. de Boer, Paulien Hogeweg

ABSTRACT

Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by "immuno" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells. More... »

PAGES

437-449

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6

DOI

http://dx.doi.org/10.1007/s00251-003-0585-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024604254

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12955356


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cysteine Endopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Major Histocompatibility Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multienzyme Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteasome Endopeptidase Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
            "Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kesmir", 
        "givenName": "Can", 
        "id": "sg:person.01173000123.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.10417.33", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
            "Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Noort", 
        "givenName": "Vera", 
        "id": "sg:person.01256071377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256071377.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogeweg", 
        "givenName": "Paulien", 
        "id": "sg:person.01107537347.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107537347.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002510050595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019170092", 
          "https://doi.org/10.1007/s002510050595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002510050245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031665177", 
          "https://doi.org/10.1007/s002510050245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386463a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040521478", 
          "https://doi.org/10.1038/386463a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35056572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001569345", 
          "https://doi.org/10.1038/35056572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/80852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017942471", 
          "https://doi.org/10.1038/80852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335167a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035888295", 
          "https://doi.org/10.1038/335167a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08-30", 
    "datePublishedReg": "2003-08-30", 
    "description": "Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by \"immuno\" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00251-003-0585-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1019755", 
        "issn": [
          "0093-7711", 
          "1432-1211"
        ], 
        "name": "Immunogenetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "vertebrate cells", 
      "phylogenetic analysis", 
      "bioinformatics tools", 
      "pathogen proteomes", 
      "bioinformatics analysis", 
      "intracellular proteins", 
      "proteasome subunits", 
      "proteasome", 
      "active proteasome subunits", 
      "constitutive counterpart", 
      "specific enzymes", 
      "constitutive proteasome", 
      "functional differences", 
      "major histocompatibility complex", 
      "subunits", 
      "histocompatibility complex", 
      "immunoproteasome", 
      "direct evidence", 
      "proteome", 
      "cells", 
      "peptides", 
      "MHC ligands", 
      "protein", 
      "antigen presentation", 
      "enzyme", 
      "specificity", 
      "best ligand", 
      "ligands", 
      "complexes", 
      "immunosubunits", 
      "gamma interferon", 
      "degradation", 
      "evidence", 
      "analysis", 
      "differs", 
      "MHC", 
      "function", 
      "interferon", 
      "immuno", 
      "differences", 
      "counterparts", 
      "form", 
      "tool", 
      "data", 
      "main question", 
      "questions", 
      "experimental degradation data", 
      "degradation data", 
      "presentation"
    ], 
    "name": "Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome", 
    "pagination": "437-449", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024604254"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00251-003-0585-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12955356"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00251-003-0585-6", 
      "https://app.dimensions.ai/details/publication/pub.1024604254"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_373.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00251-003-0585-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      91 URIs      77 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00251-003-0585-6 schema:about N02691148438442818a91925c724a820c
2 N175bac62f1414bbbab39b6eb107021ea
3 N1c5c48a77c074bf2b3f57692f7e63a05
4 N4124c93a046145898cda976468174a5f
5 N465c376dab4c406ba4cfd723ba04e85c
6 N4ed395811d1b4ed4a55ceadaf5e32782
7 N532f94df4d8c4a0b940abda73053afa8
8 N969313a74659456b93bcb1819caff808
9 N9ea994a8a1984d4794a28f2444e9253d
10 Nc75c1f1d8ec44a588d1ce27af2c8861e
11 Nd3eb281ea05e4ab2ac2138ed4558284a
12 anzsrc-for:11
13 anzsrc-for:1107
14 schema:author N0d1474f6198947b5861f596fac3e0aa0
15 schema:citation sg:pub.10.1007/s002510050245
16 sg:pub.10.1007/s002510050595
17 sg:pub.10.1038/335167a0
18 sg:pub.10.1038/35056572
19 sg:pub.10.1038/386463a0
20 sg:pub.10.1038/80852
21 schema:datePublished 2003-08-30
22 schema:datePublishedReg 2003-08-30
23 schema:description Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by "immuno" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N74aba75a6c4b42939d573f48fa1c67a8
27 Nd870b127e25f4c008e802ab53c7de0ec
28 sg:journal.1019755
29 schema:keywords MHC
30 MHC ligands
31 active proteasome subunits
32 analysis
33 antigen presentation
34 best ligand
35 bioinformatics analysis
36 bioinformatics tools
37 cells
38 complexes
39 constitutive counterpart
40 constitutive proteasome
41 counterparts
42 data
43 degradation
44 degradation data
45 differences
46 differs
47 direct evidence
48 enzyme
49 evidence
50 experimental degradation data
51 form
52 function
53 functional differences
54 gamma interferon
55 histocompatibility complex
56 immuno
57 immunoproteasome
58 immunosubunits
59 interferon
60 intracellular proteins
61 ligands
62 main question
63 major histocompatibility complex
64 pathogen proteomes
65 peptides
66 phylogenetic analysis
67 presentation
68 proteasome
69 proteasome subunits
70 protein
71 proteome
72 questions
73 specific enzymes
74 specificity
75 subunits
76 tool
77 vertebrate cells
78 schema:name Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome
79 schema:pagination 437-449
80 schema:productId N8a96579e40fb42168f7408c3c471ac9a
81 N8af948cf7342424fb6a917d14e34fae8
82 Ne8e806580caa4ac6a375da92e070663f
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024604254
84 https://doi.org/10.1007/s00251-003-0585-6
85 schema:sdDatePublished 2022-12-01T06:24
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N4b6c17c7bc964ef99f4cc33e19ce4c47
88 schema:url https://doi.org/10.1007/s00251-003-0585-6
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N02691148438442818a91925c724a820c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Computational Biology
94 rdf:type schema:DefinedTerm
95 N09d27585b69e4ed2b85e321d0a12d7dc rdf:first sg:person.01256071377.34
96 rdf:rest N4070337e0d614b56a42f3b68555d14b6
97 N0d1474f6198947b5861f596fac3e0aa0 rdf:first sg:person.01173000123.16
98 rdf:rest N09d27585b69e4ed2b85e321d0a12d7dc
99 N175bac62f1414bbbab39b6eb107021ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Humans
101 rdf:type schema:DefinedTerm
102 N1c5c48a77c074bf2b3f57692f7e63a05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Sequence Analysis, DNA
104 rdf:type schema:DefinedTerm
105 N4070337e0d614b56a42f3b68555d14b6 rdf:first sg:person.0774503452.97
106 rdf:rest Nedd41b4c9f2446968d4e6b6a6f9fb926
107 N4124c93a046145898cda976468174a5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Animals
109 rdf:type schema:DefinedTerm
110 N465c376dab4c406ba4cfd723ba04e85c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Phylogeny
112 rdf:type schema:DefinedTerm
113 N4b6c17c7bc964ef99f4cc33e19ce4c47 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N4ed395811d1b4ed4a55ceadaf5e32782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Multienzyme Complexes
117 rdf:type schema:DefinedTerm
118 N532f94df4d8c4a0b940abda73053afa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Sequence Analysis, Protein
120 rdf:type schema:DefinedTerm
121 N74aba75a6c4b42939d573f48fa1c67a8 schema:issueNumber 7
122 rdf:type schema:PublicationIssue
123 N8a96579e40fb42168f7408c3c471ac9a schema:name pubmed_id
124 schema:value 12955356
125 rdf:type schema:PropertyValue
126 N8af948cf7342424fb6a917d14e34fae8 schema:name dimensions_id
127 schema:value pub.1024604254
128 rdf:type schema:PropertyValue
129 N969313a74659456b93bcb1819caff808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Evolution, Molecular
131 rdf:type schema:DefinedTerm
132 N9ea994a8a1984d4794a28f2444e9253d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Proteasome Endopeptidase Complex
134 rdf:type schema:DefinedTerm
135 Nc75c1f1d8ec44a588d1ce27af2c8861e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Major Histocompatibility Complex
137 rdf:type schema:DefinedTerm
138 Nd3eb281ea05e4ab2ac2138ed4558284a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Cysteine Endopeptidases
140 rdf:type schema:DefinedTerm
141 Nd870b127e25f4c008e802ab53c7de0ec schema:volumeNumber 55
142 rdf:type schema:PublicationVolume
143 Ne8e806580caa4ac6a375da92e070663f schema:name doi
144 schema:value 10.1007/s00251-003-0585-6
145 rdf:type schema:PropertyValue
146 Nedd41b4c9f2446968d4e6b6a6f9fb926 rdf:first sg:person.01107537347.73
147 rdf:rest rdf:nil
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
152 schema:name Immunology
153 rdf:type schema:DefinedTerm
154 sg:journal.1019755 schema:issn 0093-7711
155 1432-1211
156 schema:name Immunogenetics
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.01107537347.73 schema:affiliation grid-institutes:grid.5477.1
160 schema:familyName Hogeweg
161 schema:givenName Paulien
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107537347.73
163 rdf:type schema:Person
164 sg:person.01173000123.16 schema:affiliation grid-institutes:grid.5170.3
165 schema:familyName Kesmir
166 schema:givenName Can
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16
168 rdf:type schema:Person
169 sg:person.01256071377.34 schema:affiliation grid-institutes:grid.10417.33
170 schema:familyName van Noort
171 schema:givenName Vera
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256071377.34
173 rdf:type schema:Person
174 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
175 schema:familyName de Boer
176 schema:givenName Rob J.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
178 rdf:type schema:Person
179 sg:pub.10.1007/s002510050245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031665177
180 https://doi.org/10.1007/s002510050245
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s002510050595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170092
183 https://doi.org/10.1007/s002510050595
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/335167a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035888295
186 https://doi.org/10.1038/335167a0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/35056572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001569345
189 https://doi.org/10.1038/35056572
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/386463a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040521478
192 https://doi.org/10.1038/386463a0
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/80852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017942471
195 https://doi.org/10.1038/80852
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.10417.33 schema:alternateName Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
198 schema:name Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
199 Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
200 rdf:type schema:Organization
201 grid-institutes:grid.5170.3 schema:alternateName Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
202 schema:name Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
203 Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
204 rdf:type schema:Organization
205 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
206 schema:name Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...