Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-08-30

AUTHORS

Can Kesmir, Vera van Noort, Rob J. de Boer, Paulien Hogeweg

ABSTRACT

Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by "immuno" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells. More... »

PAGES

437-449

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6

DOI

http://dx.doi.org/10.1007/s00251-003-0585-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024604254

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12955356


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cysteine Endopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Major Histocompatibility Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multienzyme Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteasome Endopeptidase Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
            "Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kesmir", 
        "givenName": "Can", 
        "id": "sg:person.01173000123.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.10417.33", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
            "Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Noort", 
        "givenName": "Vera", 
        "id": "sg:person.01256071377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256071377.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hogeweg", 
        "givenName": "Paulien", 
        "id": "sg:person.01107537347.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107537347.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002510050245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031665177", 
          "https://doi.org/10.1007/s002510050245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386463a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040521478", 
          "https://doi.org/10.1038/386463a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35056572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001569345", 
          "https://doi.org/10.1038/35056572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/80852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017942471", 
          "https://doi.org/10.1038/80852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002510050595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019170092", 
          "https://doi.org/10.1007/s002510050595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/335167a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035888295", 
          "https://doi.org/10.1038/335167a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08-30", 
    "datePublishedReg": "2003-08-30", 
    "description": "Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by \"immuno\" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00251-003-0585-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1019755", 
        "issn": [
          "0093-7711", 
          "1432-1211"
        ], 
        "name": "Immunogenetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "vertebrate cells", 
      "phylogenetic analysis", 
      "bioinformatics tools", 
      "pathogen proteomes", 
      "bioinformatics analysis", 
      "intracellular proteins", 
      "proteasome subunits", 
      "proteasome", 
      "active proteasome subunits", 
      "constitutive counterpart", 
      "specific enzymes", 
      "constitutive proteasome", 
      "functional differences", 
      "major histocompatibility complex", 
      "subunits", 
      "histocompatibility complex", 
      "immunoproteasome", 
      "direct evidence", 
      "proteome", 
      "cells", 
      "peptides", 
      "MHC ligands", 
      "protein", 
      "antigen presentation", 
      "enzyme", 
      "specificity", 
      "best ligand", 
      "ligands", 
      "complexes", 
      "immunosubunits", 
      "gamma interferon", 
      "degradation", 
      "evidence", 
      "analysis", 
      "differs", 
      "MHC", 
      "function", 
      "interferon", 
      "immuno", 
      "differences", 
      "counterparts", 
      "form", 
      "tool", 
      "data", 
      "main question", 
      "questions", 
      "experimental degradation data", 
      "degradation data", 
      "presentation"
    ], 
    "name": "Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome", 
    "pagination": "437-449", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024604254"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00251-003-0585-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12955356"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00251-003-0585-6", 
      "https://app.dimensions.ai/details/publication/pub.1024604254"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_377.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00251-003-0585-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00251-003-0585-6'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      91 URIs      77 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00251-003-0585-6 schema:about N0beccc4aac0a4c6ba8a0b6c252657065
2 N16dd45b954404c67a0217c83e743f7cc
3 N1c1ee71ccc134315b487836b09294981
4 N2129317e926140c4b3fc49747646e2e6
5 N40edb7ed153d42f08525790037c91204
6 N494b222d116e43d4828197cbe92d4fe0
7 N5f13dfc6107f42a5a760f5f56b83c895
8 N9a51eedd7e8644858f170572da741412
9 N9f7b438577934b40814e09c91a0a838c
10 Nac99102d7e3340d9b8d971e73d44aa91
11 Nf29c7959899545499d9c084bb56e6ff9
12 anzsrc-for:11
13 anzsrc-for:1107
14 schema:author N40b665ce41cd41eb9300b54883dcdfd2
15 schema:citation sg:pub.10.1007/s002510050245
16 sg:pub.10.1007/s002510050595
17 sg:pub.10.1038/335167a0
18 sg:pub.10.1038/35056572
19 sg:pub.10.1038/386463a0
20 sg:pub.10.1038/80852
21 schema:datePublished 2003-08-30
22 schema:datePublishedReg 2003-08-30
23 schema:description Intracellular proteins are degraded largely by proteasomes. In cells stimulated with gamma interferon , the active proteasome subunits are replaced by "immuno" subunits that form immunoproteasomes. Phylogenetic analysis of the immunosubunits has revealed that they evolve faster than their constitutive counterparts. This suggests that the immunoproteasome has evolved a function that differs from that of the constitutive proteasome. Accumulating experimental degradation data demonstrate, indeed, that the specificity of the immunoproteasome and the constitutive proteasome differs. However, it has not yet been quantified how different the specificity of two forms of the proteasome are. The main question, which still lacks direct evidence, is whether the immunoproteasome generates more MHC ligands. Here we use bioinformatics tools to quantify these differences and show that the immunoproteasome is a more specific enzyme than the constitutive proteasome. Additionally, we predict the degradation of pathogen proteomes and find that the immunoproteasome generates peptides that are better ligands for MHC binding than peptides generated by the constitutive proteasome. Thus, our analysis provides evidence that the immunoproteasome has co-evolved with the major histocompatibility complex to optimize antigen presentation in vertebrate cells.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf Ne37c149ca01249b38757c06b2899c55f
27 Nf304868baa194b08aa4068cbbe3e6c91
28 sg:journal.1019755
29 schema:keywords MHC
30 MHC ligands
31 active proteasome subunits
32 analysis
33 antigen presentation
34 best ligand
35 bioinformatics analysis
36 bioinformatics tools
37 cells
38 complexes
39 constitutive counterpart
40 constitutive proteasome
41 counterparts
42 data
43 degradation
44 degradation data
45 differences
46 differs
47 direct evidence
48 enzyme
49 evidence
50 experimental degradation data
51 form
52 function
53 functional differences
54 gamma interferon
55 histocompatibility complex
56 immuno
57 immunoproteasome
58 immunosubunits
59 interferon
60 intracellular proteins
61 ligands
62 main question
63 major histocompatibility complex
64 pathogen proteomes
65 peptides
66 phylogenetic analysis
67 presentation
68 proteasome
69 proteasome subunits
70 protein
71 proteome
72 questions
73 specific enzymes
74 specificity
75 subunits
76 tool
77 vertebrate cells
78 schema:name Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome
79 schema:pagination 437-449
80 schema:productId N3dca51ee2ce44a40bb4de78c6f8500d2
81 Nd2b1a49e2d9b4e66a1198a54d6ddbb8f
82 Nd6599d1932e14cd9a148a56152753697
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024604254
84 https://doi.org/10.1007/s00251-003-0585-6
85 schema:sdDatePublished 2022-09-02T15:50
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N212d43c2c9644d7bb2d524445559efa4
88 schema:url https://doi.org/10.1007/s00251-003-0585-6
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0656b1193a5a48c883655d607140f8c2 rdf:first sg:person.01107537347.73
93 rdf:rest rdf:nil
94 N0beccc4aac0a4c6ba8a0b6c252657065 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Computational Biology
96 rdf:type schema:DefinedTerm
97 N16dd45b954404c67a0217c83e743f7cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Major Histocompatibility Complex
99 rdf:type schema:DefinedTerm
100 N1c1ee71ccc134315b487836b09294981 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Evolution, Molecular
102 rdf:type schema:DefinedTerm
103 N2129317e926140c4b3fc49747646e2e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Sequence Analysis, Protein
105 rdf:type schema:DefinedTerm
106 N212d43c2c9644d7bb2d524445559efa4 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N3030de716cff4366a4e0bc12f0730b09 rdf:first sg:person.01256071377.34
109 rdf:rest N7bc47661005a491faf2e7ea47d41fea9
110 N3dca51ee2ce44a40bb4de78c6f8500d2 schema:name dimensions_id
111 schema:value pub.1024604254
112 rdf:type schema:PropertyValue
113 N40b665ce41cd41eb9300b54883dcdfd2 rdf:first sg:person.01173000123.16
114 rdf:rest N3030de716cff4366a4e0bc12f0730b09
115 N40edb7ed153d42f08525790037c91204 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Proteasome Endopeptidase Complex
117 rdf:type schema:DefinedTerm
118 N494b222d116e43d4828197cbe92d4fe0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Animals
120 rdf:type schema:DefinedTerm
121 N5f13dfc6107f42a5a760f5f56b83c895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Multienzyme Complexes
123 rdf:type schema:DefinedTerm
124 N7bc47661005a491faf2e7ea47d41fea9 rdf:first sg:person.0774503452.97
125 rdf:rest N0656b1193a5a48c883655d607140f8c2
126 N9a51eedd7e8644858f170572da741412 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Sequence Analysis, DNA
128 rdf:type schema:DefinedTerm
129 N9f7b438577934b40814e09c91a0a838c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 Nac99102d7e3340d9b8d971e73d44aa91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cysteine Endopeptidases
134 rdf:type schema:DefinedTerm
135 Nd2b1a49e2d9b4e66a1198a54d6ddbb8f schema:name pubmed_id
136 schema:value 12955356
137 rdf:type schema:PropertyValue
138 Nd6599d1932e14cd9a148a56152753697 schema:name doi
139 schema:value 10.1007/s00251-003-0585-6
140 rdf:type schema:PropertyValue
141 Ne37c149ca01249b38757c06b2899c55f schema:volumeNumber 55
142 rdf:type schema:PublicationVolume
143 Nf29c7959899545499d9c084bb56e6ff9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Phylogeny
145 rdf:type schema:DefinedTerm
146 Nf304868baa194b08aa4068cbbe3e6c91 schema:issueNumber 7
147 rdf:type schema:PublicationIssue
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
152 schema:name Immunology
153 rdf:type schema:DefinedTerm
154 sg:journal.1019755 schema:issn 0093-7711
155 1432-1211
156 schema:name Immunogenetics
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.01107537347.73 schema:affiliation grid-institutes:grid.5477.1
160 schema:familyName Hogeweg
161 schema:givenName Paulien
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107537347.73
163 rdf:type schema:Person
164 sg:person.01173000123.16 schema:affiliation grid-institutes:grid.5170.3
165 schema:familyName Kesmir
166 schema:givenName Can
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173000123.16
168 rdf:type schema:Person
169 sg:person.01256071377.34 schema:affiliation grid-institutes:grid.10417.33
170 schema:familyName van Noort
171 schema:givenName Vera
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256071377.34
173 rdf:type schema:Person
174 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
175 schema:familyName de Boer
176 schema:givenName Rob J.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
178 rdf:type schema:Person
179 sg:pub.10.1007/s002510050245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031665177
180 https://doi.org/10.1007/s002510050245
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s002510050595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170092
183 https://doi.org/10.1007/s002510050595
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/335167a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035888295
186 https://doi.org/10.1038/335167a0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/35056572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001569345
189 https://doi.org/10.1038/35056572
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/386463a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040521478
192 https://doi.org/10.1038/386463a0
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/80852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017942471
195 https://doi.org/10.1038/80852
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.10417.33 schema:alternateName Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
198 schema:name Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
199 Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
200 rdf:type schema:Organization
201 grid-institutes:grid.5170.3 schema:alternateName Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
202 schema:name Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
203 Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
204 rdf:type schema:Organization
205 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
206 schema:name Theoretical Biology/Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...