Fungal Community Composition in Neotropical Rain Forests: the Influence of Tree Diversity and Precipitation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11-12

AUTHORS

Krista L. McGuire, Noah Fierer, Carling Bateman, Kathleen K. Treseder, Benjamin L. Turner

ABSTRACT

Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0–20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities. More... »

PAGES

804-812

References to SciGraph publications

  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 1999-05. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review in BIOLOGY AND FERTILITY OF SOILS
  • 1997-05. Factors related to diversity of decomposer fungi in tropical forests in BIODIVERSITY AND CONSERVATION
  • 2010-05-06. Soil bacterial and fungal communities across a pH gradient in an arable soil in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2005-08. The contribution of species richness and composition to bacterial services in NATURE
  • 1996-09. Quantitative comparisons ofin situ microbial biodiversity by signature biomarker analysis in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 1994-02. High tree alpha-diversity in Amazonian Ecuador in BIODIVERSITY AND CONSERVATION
  • 2008-09-03. Fungal Taxa Target Different Carbon Sources in Forest Soil in ECOSYSTEMS
  • 2008-02-10. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex in NATURE METHODS
  • 2009-11-17. Biodiversity at the plant–soil interface: microbial abundance and community structure respond to litter mixing in OECOLOGIA
  • 2010-06-25. Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest in OECOLOGIA
  • 2003. Plant Litter, Decomposition, Humus Formation, Carbon Sequestration in NONE
  • 2000-01. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina in PLANT AND SOIL
  • 2006-08-08. The Influence of Tropical Plant Diversity and Composition on Soil Microbial Communities in MICROBIAL ECOLOGY
  • 2004-01-22. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi in OECOLOGIA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00248-011-9973-x

    DOI

    http://dx.doi.org/10.1007/s00248-011-9973-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034730821

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22080256


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fungi", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Leaves", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soil", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soil Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trees", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tropical Climate", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Barnard College, Columbia University, 3009 Broadway, 10027, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.470930.9", 
              "name": [
                "Barnard College, Columbia University, 3009 Broadway, 10027, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McGuire", 
            "givenName": "Krista L.", 
            "id": "sg:person.0661365076.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661365076.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado, Boulder, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "University of Colorado, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fierer", 
            "givenName": "Noah", 
            "id": "sg:person.01061615031.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061615031.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Barnard College, Columbia University, 3009 Broadway, 10027, New York, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.470930.9", 
              "name": [
                "Barnard College, Columbia University, 3009 Broadway, 10027, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bateman", 
            "givenName": "Carling", 
            "id": "sg:person.01023504633.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023504633.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Irvine, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Treseder", 
            "givenName": "Kathleen K.", 
            "id": "sg:person.01364310600.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364310600.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama", 
              "id": "http://www.grid.ac/institutes/grid.438006.9", 
              "name": [
                "Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turner", 
            "givenName": "Benjamin L.", 
            "id": "sg:person.012110624533.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110624533.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.1184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042740345", 
              "https://doi.org/10.1038/nmeth.1184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-006-9115-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042681035", 
              "https://doi.org/10.1007/s00248-006-9115-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00115330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008831101", 
              "https://doi.org/10.1007/bf00115330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-009-1498-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048595007", 
              "https://doi.org/10.1007/s00442-009-1498-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01574692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022080642", 
              "https://doi.org/10.1007/bf01574692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009262582", 
              "https://doi.org/10.1038/nature03891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10021-008-9186-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018663153", 
              "https://doi.org/10.1007/s10021-008-9186-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003740050533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033813478", 
              "https://doi.org/10.1007/s003740050533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018314219111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053538178", 
              "https://doi.org/10.1023/a:1018314219111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-003-1478-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019928828", 
              "https://doi.org/10.1007/s00442-003-1478-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020560324", 
              "https://doi.org/10.1038/ismej.2010.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-010-1686-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009902960", 
              "https://doi.org/10.1007/s00442-010-1686-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014981715532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018555784", 
              "https://doi.org/10.1023/a:1014981715532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05349-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012616261", 
              "https://doi.org/10.1007/978-3-662-05349-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-11-12", 
        "datePublishedReg": "2011-11-12", 
        "description": "Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0\u201320\u00a0cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6\u00a0months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00248-011-9973-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3073291", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1081458", 
            "issn": [
              "0095-3628", 
              "1432-184X"
            ], 
            "name": "Microbial Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "63"
          }
        ], 
        "keywords": [
          "plant species richness", 
          "soil fungal communities", 
          "plant diversity", 
          "fungal communities", 
          "leaf litter", 
          "plant richness", 
          "species richness", 
          "diversity gradient", 
          "community composition", 
          "rain forest", 
          "phospholipid fatty acid (PLFA) analysis", 
          "lowland tropical rain forest", 
          "forest census plot", 
          "plant diversity gradient", 
          "high plant diversity", 
          "soil nutrient status", 
          "fungal community composition", 
          "fungal community structure", 
          "species of litter", 
          "neotropical rain forest", 
          "microbial community composition", 
          "tropical rain forest", 
          "mean annual precipitation", 
          "Isthmus of Panama", 
          "litter diversity", 
          "tree diversity", 
          "forest soil", 
          "soil nutrients", 
          "fungal richness", 
          "decomposer communities", 
          "tropical forests", 
          "census plots", 
          "fungal diversity", 
          "community structure", 
          "global carbon", 
          "nutrient status", 
          "fungal taxa", 
          "resource heterogeneity", 
          "richness", 
          "fatty acid analysis", 
          "litter bags", 
          "nitrogen flux", 
          "decomposition rate", 
          "soil", 
          "annual precipitation", 
          "litter", 
          "forest", 
          "diversity", 
          "community", 
          "diversity of compounds", 
          "species", 
          "precipitation", 
          "acid analysis", 
          "gradient", 
          "biome", 
          "taxa", 
          "Panama", 
          "nutrients", 
          "composition", 
          "important factor", 
          "carbon", 
          "plots", 
          "fungi", 
          "significant effect", 
          "valuable insights", 
          "broad range", 
          "sites", 
          "area", 
          "flux", 
          "heterogeneity", 
          "function", 
          "factors", 
          "isthmus", 
          "extent", 
          "decomposition", 
          "changes", 
          "insights", 
          "role", 
          "effect", 
          "structure", 
          "correlation", 
          "status", 
          "range", 
          "influence", 
          "bags", 
          "compounds", 
          "rate", 
          "analysis", 
          "study", 
          "number", 
          "results", 
          "months", 
          "natural plant diversity gradient", 
          "re-created litter diversity gradients", 
          "litter diversity gradients", 
          "tropical forest soil fungal communities", 
          "forest soil fungal communities"
        ], 
        "name": "Fungal Community Composition in Neotropical Rain Forests: the Influence of Tree Diversity and Precipitation", 
        "pagination": "804-812", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034730821"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00248-011-9973-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22080256"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00248-011-9973-x", 
          "https://app.dimensions.ai/details/publication/pub.1034730821"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_528.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00248-011-9973-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00248-011-9973-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00248-011-9973-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00248-011-9973-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00248-011-9973-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    310 TRIPLES      22 PREDICATES      151 URIs      124 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00248-011-9973-x schema:about N3c9cc26348204d0f90c760a83160e8b1
    2 N4f3aa1226d2940ef88d0a21cc862250e
    3 N52f469775eb44960a844a9bffa549e19
    4 N55e4bfc040b4491685805472103fde32
    5 N5f889238272a4353b4329fc491bbea8b
    6 N6c32e585ec034b3f8616e97e5266d337
    7 N79a5c673511e4bee948ebf93bd819931
    8 Nd0be80ea748b4fe8a3cf0b151b6c2e64
    9 Nd403fdc2d57540aa9c3aa3bd02c372b4
    10 anzsrc-for:05
    11 anzsrc-for:0503
    12 anzsrc-for:06
    13 anzsrc-for:0602
    14 anzsrc-for:0605
    15 anzsrc-for:0607
    16 schema:author N661879ee75b842578aa529fa42e51bb8
    17 schema:citation sg:pub.10.1007/978-3-662-05349-2
    18 sg:pub.10.1007/bf00115330
    19 sg:pub.10.1007/bf01574692
    20 sg:pub.10.1007/s00248-006-9115-z
    21 sg:pub.10.1007/s003740050533
    22 sg:pub.10.1007/s00442-003-1478-y
    23 sg:pub.10.1007/s00442-009-1498-3
    24 sg:pub.10.1007/s00442-010-1686-1
    25 sg:pub.10.1007/s10021-008-9186-4
    26 sg:pub.10.1023/a:1014981715532
    27 sg:pub.10.1023/a:1018314219111
    28 sg:pub.10.1038/ismej.2010.58
    29 sg:pub.10.1038/nature03891
    30 sg:pub.10.1038/nmeth.1184
    31 sg:pub.10.1038/nmeth.f.303
    32 schema:datePublished 2011-11-12
    33 schema:datePublishedReg 2011-11-12
    34 schema:description Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0–20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.
    35 schema:genre article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N93b62cb5c6dd42629910b232cb597c11
    39 Na9672cd6196d453ab38499a783d6796f
    40 sg:journal.1081458
    41 schema:keywords Isthmus of Panama
    42 Panama
    43 acid analysis
    44 analysis
    45 annual precipitation
    46 area
    47 bags
    48 biome
    49 broad range
    50 carbon
    51 census plots
    52 changes
    53 community
    54 community composition
    55 community structure
    56 composition
    57 compounds
    58 correlation
    59 decomposer communities
    60 decomposition
    61 decomposition rate
    62 diversity
    63 diversity gradient
    64 diversity of compounds
    65 effect
    66 extent
    67 factors
    68 fatty acid analysis
    69 flux
    70 forest
    71 forest census plot
    72 forest soil
    73 forest soil fungal communities
    74 function
    75 fungal communities
    76 fungal community composition
    77 fungal community structure
    78 fungal diversity
    79 fungal richness
    80 fungal taxa
    81 fungi
    82 global carbon
    83 gradient
    84 heterogeneity
    85 high plant diversity
    86 important factor
    87 influence
    88 insights
    89 isthmus
    90 leaf litter
    91 litter
    92 litter bags
    93 litter diversity
    94 litter diversity gradients
    95 lowland tropical rain forest
    96 mean annual precipitation
    97 microbial community composition
    98 months
    99 natural plant diversity gradient
    100 neotropical rain forest
    101 nitrogen flux
    102 number
    103 nutrient status
    104 nutrients
    105 phospholipid fatty acid (PLFA) analysis
    106 plant diversity
    107 plant diversity gradient
    108 plant richness
    109 plant species richness
    110 plots
    111 precipitation
    112 rain forest
    113 range
    114 rate
    115 re-created litter diversity gradients
    116 resource heterogeneity
    117 results
    118 richness
    119 role
    120 significant effect
    121 sites
    122 soil
    123 soil fungal communities
    124 soil nutrient status
    125 soil nutrients
    126 species
    127 species of litter
    128 species richness
    129 status
    130 structure
    131 study
    132 taxa
    133 tree diversity
    134 tropical forest soil fungal communities
    135 tropical forests
    136 tropical rain forest
    137 valuable insights
    138 schema:name Fungal Community Composition in Neotropical Rain Forests: the Influence of Tree Diversity and Precipitation
    139 schema:pagination 804-812
    140 schema:productId N54a7349419ef42d2bd6f1e9922f576ac
    141 N6792b322667c43259f679b2fd41f51ae
    142 N88759fe2d9cc4d5389dc76ca0f810d22
    143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034730821
    144 https://doi.org/10.1007/s00248-011-9973-x
    145 schema:sdDatePublished 2021-11-01T18:16
    146 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    147 schema:sdPublisher N455ac9774bb44468b650edb3cb49ba90
    148 schema:url https://doi.org/10.1007/s00248-011-9973-x
    149 sgo:license sg:explorer/license/
    150 sgo:sdDataset articles
    151 rdf:type schema:ScholarlyArticle
    152 N3c1de21fec564fe8a47b534c1a757dcd rdf:first sg:person.01023504633.41
    153 rdf:rest Ne15e6242e39041279b7117c608b22390
    154 N3c9cc26348204d0f90c760a83160e8b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Fungi
    156 rdf:type schema:DefinedTerm
    157 N455ac9774bb44468b650edb3cb49ba90 schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 N4f3aa1226d2940ef88d0a21cc862250e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Rain
    161 rdf:type schema:DefinedTerm
    162 N52f469775eb44960a844a9bffa549e19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Ecosystem
    164 rdf:type schema:DefinedTerm
    165 N54a7349419ef42d2bd6f1e9922f576ac schema:name dimensions_id
    166 schema:value pub.1034730821
    167 rdf:type schema:PropertyValue
    168 N55e4bfc040b4491685805472103fde32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Soil
    170 rdf:type schema:DefinedTerm
    171 N5f889238272a4353b4329fc491bbea8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name DNA, Fungal
    173 rdf:type schema:DefinedTerm
    174 N661879ee75b842578aa529fa42e51bb8 rdf:first sg:person.0661365076.95
    175 rdf:rest Nf2c79905006644cc82089c36fae31a9c
    176 N6792b322667c43259f679b2fd41f51ae schema:name doi
    177 schema:value 10.1007/s00248-011-9973-x
    178 rdf:type schema:PropertyValue
    179 N6c32e585ec034b3f8616e97e5266d337 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Plant Leaves
    181 rdf:type schema:DefinedTerm
    182 N79a5c673511e4bee948ebf93bd819931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Soil Microbiology
    184 rdf:type schema:DefinedTerm
    185 N88759fe2d9cc4d5389dc76ca0f810d22 schema:name pubmed_id
    186 schema:value 22080256
    187 rdf:type schema:PropertyValue
    188 N93b62cb5c6dd42629910b232cb597c11 schema:volumeNumber 63
    189 rdf:type schema:PublicationVolume
    190 Na9672cd6196d453ab38499a783d6796f schema:issueNumber 4
    191 rdf:type schema:PublicationIssue
    192 Nb459247552ed4ebdbb1c94426f7b1958 rdf:first sg:person.012110624533.20
    193 rdf:rest rdf:nil
    194 Nd0be80ea748b4fe8a3cf0b151b6c2e64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Trees
    196 rdf:type schema:DefinedTerm
    197 Nd403fdc2d57540aa9c3aa3bd02c372b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Tropical Climate
    199 rdf:type schema:DefinedTerm
    200 Ne15e6242e39041279b7117c608b22390 rdf:first sg:person.01364310600.88
    201 rdf:rest Nb459247552ed4ebdbb1c94426f7b1958
    202 Nf2c79905006644cc82089c36fae31a9c rdf:first sg:person.01061615031.38
    203 rdf:rest N3c1de21fec564fe8a47b534c1a757dcd
    204 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Environmental Sciences
    206 rdf:type schema:DefinedTerm
    207 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    208 schema:name Soil Sciences
    209 rdf:type schema:DefinedTerm
    210 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    211 schema:name Biological Sciences
    212 rdf:type schema:DefinedTerm
    213 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    214 schema:name Ecology
    215 rdf:type schema:DefinedTerm
    216 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    217 schema:name Microbiology
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Plant Biology
    221 rdf:type schema:DefinedTerm
    222 sg:grant.3073291 http://pending.schema.org/fundedItem sg:pub.10.1007/s00248-011-9973-x
    223 rdf:type schema:MonetaryGrant
    224 sg:journal.1081458 schema:issn 0095-3628
    225 1432-184X
    226 schema:name Microbial Ecology
    227 schema:publisher Springer Nature
    228 rdf:type schema:Periodical
    229 sg:person.01023504633.41 schema:affiliation grid-institutes:grid.470930.9
    230 schema:familyName Bateman
    231 schema:givenName Carling
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023504633.41
    233 rdf:type schema:Person
    234 sg:person.01061615031.38 schema:affiliation grid-institutes:grid.266190.a
    235 schema:familyName Fierer
    236 schema:givenName Noah
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061615031.38
    238 rdf:type schema:Person
    239 sg:person.012110624533.20 schema:affiliation grid-institutes:grid.438006.9
    240 schema:familyName Turner
    241 schema:givenName Benjamin L.
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012110624533.20
    243 rdf:type schema:Person
    244 sg:person.01364310600.88 schema:affiliation grid-institutes:grid.266093.8
    245 schema:familyName Treseder
    246 schema:givenName Kathleen K.
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364310600.88
    248 rdf:type schema:Person
    249 sg:person.0661365076.95 schema:affiliation grid-institutes:grid.470930.9
    250 schema:familyName McGuire
    251 schema:givenName Krista L.
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661365076.95
    253 rdf:type schema:Person
    254 sg:pub.10.1007/978-3-662-05349-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012616261
    255 https://doi.org/10.1007/978-3-662-05349-2
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/bf00115330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008831101
    258 https://doi.org/10.1007/bf00115330
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/bf01574692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080642
    261 https://doi.org/10.1007/bf01574692
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00248-006-9115-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042681035
    264 https://doi.org/10.1007/s00248-006-9115-z
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s003740050533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033813478
    267 https://doi.org/10.1007/s003740050533
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00442-003-1478-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019928828
    270 https://doi.org/10.1007/s00442-003-1478-y
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s00442-009-1498-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048595007
    273 https://doi.org/10.1007/s00442-009-1498-3
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00442-010-1686-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009902960
    276 https://doi.org/10.1007/s00442-010-1686-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s10021-008-9186-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018663153
    279 https://doi.org/10.1007/s10021-008-9186-4
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1023/a:1014981715532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018555784
    282 https://doi.org/10.1023/a:1014981715532
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1023/a:1018314219111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053538178
    285 https://doi.org/10.1023/a:1018314219111
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ismej.2010.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020560324
    288 https://doi.org/10.1038/ismej.2010.58
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nature03891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009262582
    291 https://doi.org/10.1038/nature03891
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
    294 https://doi.org/10.1038/nmeth.1184
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    297 https://doi.org/10.1038/nmeth.f.303
    298 rdf:type schema:CreativeWork
    299 grid-institutes:grid.266093.8 schema:alternateName University of California, Irvine, CA, USA
    300 schema:name University of California, Irvine, CA, USA
    301 rdf:type schema:Organization
    302 grid-institutes:grid.266190.a schema:alternateName University of Colorado, Boulder, CO, USA
    303 schema:name University of Colorado, Boulder, CO, USA
    304 rdf:type schema:Organization
    305 grid-institutes:grid.438006.9 schema:alternateName Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
    306 schema:name Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
    307 rdf:type schema:Organization
    308 grid-institutes:grid.470930.9 schema:alternateName Barnard College, Columbia University, 3009 Broadway, 10027, New York, NY, USA
    309 schema:name Barnard College, Columbia University, 3009 Broadway, 10027, New York, NY, USA
    310 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...