Ontology type: schema:ScholarlyArticle
2009-07-10
AUTHORS ABSTRACTActinomycetes inhabiting granitic rocks at St. Katherine, Egypt were investigated for their bioweathering potential. Actinomycete counts ranged between 174 and 360 colony forming units per gram. Counts were positively correlated to rock porosity (r = 0.65) and negatively correlated to rock salinity (r = −0.56). Sixty-six actinomycete isolates originating from rocks could be assigned into eight genera, with a high frequency of Nocardioides and Streptomyces. Organic acids were produced by 97% of the isolates. Strains belonging to Actinopolyspora, Actinomadura, Kitasatospora, Nocardioides, and Kibdelosporangium showed the highest acid production indices. Representatives from all eight genera could precipitate metals Cu, Fe, Zn, Cd, and Ag up to concentrations of 2.5 mM each. An actinomycete consortium of two Nocardioides strains and one Kibdelosporangium strain was studied for its potential to cause rock weathering in batch experiments. Results indicated a high ability of the consortium to leach the metals Cu, Zn, and Fe up to 2.6-, 2.1-, and 1.3-fold, respectively, compared to the control after 4 weeks. The pH significantly decreased after 1 week, which was parallel to an increased release of phosphate and sulfate reaching a 2.2- and 2.5-fold increase, respectively, compared to control. Highly significant weight loss (p = 0.005) was achieved by the consortium, indicating a potential multiple role of actinomycetes in weathering by acid production, metal leaching, and solubilization of phosphate and sulfate. This study emphasizes the diverse and unique abilities of actinomycetes inhabiting rock surfaces which could be of potential biotechnological applications, such as in the bioremediation of metal-contaminated environments and metal biorecovery. More... »
PAGES753-761
http://scigraph.springernature.com/pub.10.1007/s00248-009-9549-1
DOIhttp://dx.doi.org/10.1007/s00248-009-9549-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019564450
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19590809
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Soil Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ecology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Actinobacteria",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biodegradation, Environmental",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biotransformation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Metals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mycolic Acids",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Silicon Dioxide",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Soil Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Botany Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt",
"id": "http://www.grid.ac/institutes/grid.33003.33",
"name": [
"Botany Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt"
],
"type": "Organization"
},
"familyName": "Abdulla",
"givenName": "Hesham",
"id": "sg:person.0613300131.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613300131.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s002030050350",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026140608",
"https://doi.org/10.1007/s002030050350"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ja.2006.88",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038226706",
"https://doi.org/10.1038/ja.2006.88"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-06101-5_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026904598",
"https://doi.org/10.1007/978-3-662-06101-5_1"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-07-10",
"datePublishedReg": "2009-07-10",
"description": "Actinomycetes inhabiting granitic rocks at St. Katherine, Egypt were investigated for their bioweathering potential. Actinomycete counts ranged between 174 and 360 colony forming units per gram. Counts were positively correlated to rock porosity (r\u2009=\u20090.65) and negatively correlated to rock salinity (r\u2009=\u2009\u22120.56). Sixty-six actinomycete isolates originating from rocks could be assigned into eight genera, with a high frequency of Nocardioides and Streptomyces. Organic acids were produced by 97% of the isolates. Strains belonging to Actinopolyspora, Actinomadura, Kitasatospora, Nocardioides, and Kibdelosporangium showed the highest acid production indices. Representatives from all eight genera could precipitate metals Cu, Fe, Zn, Cd, and Ag up to concentrations of 2.5\u00a0mM each. An actinomycete consortium of two Nocardioides strains and one Kibdelosporangium strain was studied for its potential to cause rock weathering in batch experiments. Results indicated a high ability of the consortium to leach the metals Cu, Zn, and Fe up to 2.6-, 2.1-, and 1.3-fold, respectively, compared to the control after 4\u00a0weeks. The pH significantly decreased after 1\u00a0week, which was parallel to an increased release of phosphate and sulfate reaching a 2.2- and 2.5-fold increase, respectively, compared to control. Highly significant weight loss (p\u2009=\u20090.005) was achieved by the consortium, indicating a potential multiple role of actinomycetes in weathering by acid production, metal leaching, and solubilization of phosphate and sulfate. This study emphasizes the diverse and unique abilities of actinomycetes inhabiting rock surfaces which could be of potential biotechnological applications, such as in the bioremediation of metal-contaminated environments and metal biorecovery.",
"genre": "article",
"id": "sg:pub.10.1007/s00248-009-9549-1",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1081458",
"issn": [
"0095-3628",
"1432-184X"
],
"name": "Microbial Ecology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "58"
}
],
"keywords": [
"significant weight loss",
"weight loss",
"metals Cu",
"granitic rocks",
"rock weathering",
"weeks",
"rock minerals",
"rock porosity",
"potential multiple roles",
"rock surface",
"count",
"metal biorecovery",
"release of phosphate",
"rocks",
"high frequency",
"Nocardioides strains",
"St. Katherine",
"metal-contaminated environments",
"multiple roles",
"strains",
"Zn",
"Fe",
"metal leaching",
"weathering",
"isolates",
"Cu",
"unique ability",
"minerals",
"salinity",
"release",
"production index",
"consortium",
"index",
"acid production",
"ability",
"sulfate",
"control",
"study",
"role",
"biotransformation",
"batch experiments",
"leaching",
"increase",
"potential",
"loss",
"acid",
"concentration",
"Cd",
"organic acids",
"biorecovery",
"Egypt",
"porosity",
"high ability",
"frequency",
"units",
"surface",
"actinomycete counts",
"colonies",
"results",
"production",
"environment",
"bioremediation",
"phosphate",
"genus",
"Katherine",
"representatives",
"actinomycetes",
"pH",
"Kibdelosporangium",
"experiments",
"Actinopolyspora",
"Actinomadura",
"solubilization",
"Nocardioides",
"Streptomyces",
"applications",
"Kitasatospora",
"potential biotechnological applications",
"biotechnological applications"
],
"name": "Bioweathering and Biotransformation of Granitic Rock Minerals by Actinomycetes",
"pagination": "753-761",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019564450"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00248-009-9549-1"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19590809"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00248-009-9549-1",
"https://app.dimensions.ai/details/publication/pub.1019564450"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_477.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00248-009-9549-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00248-009-9549-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00248-009-9549-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00248-009-9549-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00248-009-9549-1'
This table displays all metadata directly associated to this object as RDF triples.
192 TRIPLES
21 PREDICATES
117 URIs
103 LITERALS
14 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00248-009-9549-1 | schema:about | N3154e199cf8c4f51b822f3cfdae85664 |
2 | ″ | ″ | N3ae5fbd97ad24326ae8a4c9a8001456c |
3 | ″ | ″ | N73635e71a52d423485e729e8582efb62 |
4 | ″ | ″ | N84f70d44990f4a47bd8c0e34cbbf3afb |
5 | ″ | ″ | N8c84d74ec0eb41779f994be62ae16dce |
6 | ″ | ″ | N9bf848f054ea4b1dbd0ac8c055f3d89d |
7 | ″ | ″ | Nb0a4c142a9b44302aa7e2b3937818f65 |
8 | ″ | ″ | anzsrc-for:05 |
9 | ″ | ″ | anzsrc-for:0503 |
10 | ″ | ″ | anzsrc-for:06 |
11 | ″ | ″ | anzsrc-for:0602 |
12 | ″ | ″ | anzsrc-for:0605 |
13 | ″ | schema:author | Nd79ae567839d44c1916b2d02854d123c |
14 | ″ | schema:citation | sg:pub.10.1007/978-3-662-06101-5_1 |
15 | ″ | ″ | sg:pub.10.1007/s002030050350 |
16 | ″ | ″ | sg:pub.10.1038/ja.2006.88 |
17 | ″ | schema:datePublished | 2009-07-10 |
18 | ″ | schema:datePublishedReg | 2009-07-10 |
19 | ″ | schema:description | Actinomycetes inhabiting granitic rocks at St. Katherine, Egypt were investigated for their bioweathering potential. Actinomycete counts ranged between 174 and 360 colony forming units per gram. Counts were positively correlated to rock porosity (r = 0.65) and negatively correlated to rock salinity (r = −0.56). Sixty-six actinomycete isolates originating from rocks could be assigned into eight genera, with a high frequency of Nocardioides and Streptomyces. Organic acids were produced by 97% of the isolates. Strains belonging to Actinopolyspora, Actinomadura, Kitasatospora, Nocardioides, and Kibdelosporangium showed the highest acid production indices. Representatives from all eight genera could precipitate metals Cu, Fe, Zn, Cd, and Ag up to concentrations of 2.5 mM each. An actinomycete consortium of two Nocardioides strains and one Kibdelosporangium strain was studied for its potential to cause rock weathering in batch experiments. Results indicated a high ability of the consortium to leach the metals Cu, Zn, and Fe up to 2.6-, 2.1-, and 1.3-fold, respectively, compared to the control after 4 weeks. The pH significantly decreased after 1 week, which was parallel to an increased release of phosphate and sulfate reaching a 2.2- and 2.5-fold increase, respectively, compared to control. Highly significant weight loss (p = 0.005) was achieved by the consortium, indicating a potential multiple role of actinomycetes in weathering by acid production, metal leaching, and solubilization of phosphate and sulfate. This study emphasizes the diverse and unique abilities of actinomycetes inhabiting rock surfaces which could be of potential biotechnological applications, such as in the bioremediation of metal-contaminated environments and metal biorecovery. |
20 | ″ | schema:genre | article |
21 | ″ | schema:isAccessibleForFree | false |
22 | ″ | schema:isPartOf | N1e2a36e5de1242449eab157d38ba608c |
23 | ″ | ″ | N42bf8617efc64e2c8c94243c9b5a79b5 |
24 | ″ | ″ | sg:journal.1081458 |
25 | ″ | schema:keywords | Actinomadura |
26 | ″ | ″ | Actinopolyspora |
27 | ″ | ″ | Cd |
28 | ″ | ″ | Cu |
29 | ″ | ″ | Egypt |
30 | ″ | ″ | Fe |
31 | ″ | ″ | Katherine |
32 | ″ | ″ | Kibdelosporangium |
33 | ″ | ″ | Kitasatospora |
34 | ″ | ″ | Nocardioides |
35 | ″ | ″ | Nocardioides strains |
36 | ″ | ″ | St. Katherine |
37 | ″ | ″ | Streptomyces |
38 | ″ | ″ | Zn |
39 | ″ | ″ | ability |
40 | ″ | ″ | acid |
41 | ″ | ″ | acid production |
42 | ″ | ″ | actinomycete counts |
43 | ″ | ″ | actinomycetes |
44 | ″ | ″ | applications |
45 | ″ | ″ | batch experiments |
46 | ″ | ″ | biorecovery |
47 | ″ | ″ | bioremediation |
48 | ″ | ″ | biotechnological applications |
49 | ″ | ″ | biotransformation |
50 | ″ | ″ | colonies |
51 | ″ | ″ | concentration |
52 | ″ | ″ | consortium |
53 | ″ | ″ | control |
54 | ″ | ″ | count |
55 | ″ | ″ | environment |
56 | ″ | ″ | experiments |
57 | ″ | ″ | frequency |
58 | ″ | ″ | genus |
59 | ″ | ″ | granitic rocks |
60 | ″ | ″ | high ability |
61 | ″ | ″ | high frequency |
62 | ″ | ″ | increase |
63 | ″ | ″ | index |
64 | ″ | ″ | isolates |
65 | ″ | ″ | leaching |
66 | ″ | ″ | loss |
67 | ″ | ″ | metal biorecovery |
68 | ″ | ″ | metal leaching |
69 | ″ | ″ | metal-contaminated environments |
70 | ″ | ″ | metals Cu |
71 | ″ | ″ | minerals |
72 | ″ | ″ | multiple roles |
73 | ″ | ″ | organic acids |
74 | ″ | ″ | pH |
75 | ″ | ″ | phosphate |
76 | ″ | ″ | porosity |
77 | ″ | ″ | potential |
78 | ″ | ″ | potential biotechnological applications |
79 | ″ | ″ | potential multiple roles |
80 | ″ | ″ | production |
81 | ″ | ″ | production index |
82 | ″ | ″ | release |
83 | ″ | ″ | release of phosphate |
84 | ″ | ″ | representatives |
85 | ″ | ″ | results |
86 | ″ | ″ | rock minerals |
87 | ″ | ″ | rock porosity |
88 | ″ | ″ | rock surface |
89 | ″ | ″ | rock weathering |
90 | ″ | ″ | rocks |
91 | ″ | ″ | role |
92 | ″ | ″ | salinity |
93 | ″ | ″ | significant weight loss |
94 | ″ | ″ | solubilization |
95 | ″ | ″ | strains |
96 | ″ | ″ | study |
97 | ″ | ″ | sulfate |
98 | ″ | ″ | surface |
99 | ″ | ″ | unique ability |
100 | ″ | ″ | units |
101 | ″ | ″ | weathering |
102 | ″ | ″ | weeks |
103 | ″ | ″ | weight loss |
104 | ″ | schema:name | Bioweathering and Biotransformation of Granitic Rock Minerals by Actinomycetes |
105 | ″ | schema:pagination | 753-761 |
106 | ″ | schema:productId | N57529ebfa10b43c9ba4d849565fbc0d3 |
107 | ″ | ″ | N85c51ef0a99b4a66b27e7e122009636d |
108 | ″ | ″ | Ne92ce2bb6dd14a499f59df33c74f2d9b |
109 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019564450 |
110 | ″ | ″ | https://doi.org/10.1007/s00248-009-9549-1 |
111 | ″ | schema:sdDatePublished | 2022-08-04T16:58 |
112 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
113 | ″ | schema:sdPublisher | Nf4c1c9b2a4694d1298ce81fcca3985f9 |
114 | ″ | schema:url | https://doi.org/10.1007/s00248-009-9549-1 |
115 | ″ | sgo:license | sg:explorer/license/ |
116 | ″ | sgo:sdDataset | articles |
117 | ″ | rdf:type | schema:ScholarlyArticle |
118 | N1e2a36e5de1242449eab157d38ba608c | schema:issueNumber | 4 |
119 | ″ | rdf:type | schema:PublicationIssue |
120 | N3154e199cf8c4f51b822f3cfdae85664 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
121 | ″ | schema:name | Silicon Dioxide |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | N3ae5fbd97ad24326ae8a4c9a8001456c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
124 | ″ | schema:name | Metals |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | N42bf8617efc64e2c8c94243c9b5a79b5 | schema:volumeNumber | 58 |
127 | ″ | rdf:type | schema:PublicationVolume |
128 | N57529ebfa10b43c9ba4d849565fbc0d3 | schema:name | doi |
129 | ″ | schema:value | 10.1007/s00248-009-9549-1 |
130 | ″ | rdf:type | schema:PropertyValue |
131 | N73635e71a52d423485e729e8582efb62 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
132 | ″ | schema:name | Biodegradation, Environmental |
133 | ″ | rdf:type | schema:DefinedTerm |
134 | N84f70d44990f4a47bd8c0e34cbbf3afb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
135 | ″ | schema:name | Actinobacteria |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | N85c51ef0a99b4a66b27e7e122009636d | schema:name | dimensions_id |
138 | ″ | schema:value | pub.1019564450 |
139 | ″ | rdf:type | schema:PropertyValue |
140 | N8c84d74ec0eb41779f994be62ae16dce | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
141 | ″ | schema:name | Biotransformation |
142 | ″ | rdf:type | schema:DefinedTerm |
143 | N9bf848f054ea4b1dbd0ac8c055f3d89d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
144 | ″ | schema:name | Mycolic Acids |
145 | ″ | rdf:type | schema:DefinedTerm |
146 | Nb0a4c142a9b44302aa7e2b3937818f65 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
147 | ″ | schema:name | Soil Microbiology |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | Nd79ae567839d44c1916b2d02854d123c | rdf:first | sg:person.0613300131.97 |
150 | ″ | rdf:rest | rdf:nil |
151 | Ne92ce2bb6dd14a499f59df33c74f2d9b | schema:name | pubmed_id |
152 | ″ | schema:value | 19590809 |
153 | ″ | rdf:type | schema:PropertyValue |
154 | Nf4c1c9b2a4694d1298ce81fcca3985f9 | schema:name | Springer Nature - SN SciGraph project |
155 | ″ | rdf:type | schema:Organization |
156 | anzsrc-for:05 | schema:inDefinedTermSet | anzsrc-for: |
157 | ″ | schema:name | Environmental Sciences |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | anzsrc-for:0503 | schema:inDefinedTermSet | anzsrc-for: |
160 | ″ | schema:name | Soil Sciences |
161 | ″ | rdf:type | schema:DefinedTerm |
162 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
163 | ″ | schema:name | Biological Sciences |
164 | ″ | rdf:type | schema:DefinedTerm |
165 | anzsrc-for:0602 | schema:inDefinedTermSet | anzsrc-for: |
166 | ″ | schema:name | Ecology |
167 | ″ | rdf:type | schema:DefinedTerm |
168 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
169 | ″ | schema:name | Microbiology |
170 | ″ | rdf:type | schema:DefinedTerm |
171 | sg:journal.1081458 | schema:issn | 0095-3628 |
172 | ″ | ″ | 1432-184X |
173 | ″ | schema:name | Microbial Ecology |
174 | ″ | schema:publisher | Springer Nature |
175 | ″ | rdf:type | schema:Periodical |
176 | sg:person.0613300131.97 | schema:affiliation | grid-institutes:grid.33003.33 |
177 | ″ | schema:familyName | Abdulla |
178 | ″ | schema:givenName | Hesham |
179 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613300131.97 |
180 | ″ | rdf:type | schema:Person |
181 | sg:pub.10.1007/978-3-662-06101-5_1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026904598 |
182 | ″ | ″ | https://doi.org/10.1007/978-3-662-06101-5_1 |
183 | ″ | rdf:type | schema:CreativeWork |
184 | sg:pub.10.1007/s002030050350 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026140608 |
185 | ″ | ″ | https://doi.org/10.1007/s002030050350 |
186 | ″ | rdf:type | schema:CreativeWork |
187 | sg:pub.10.1038/ja.2006.88 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038226706 |
188 | ″ | ″ | https://doi.org/10.1038/ja.2006.88 |
189 | ″ | rdf:type | schema:CreativeWork |
190 | grid-institutes:grid.33003.33 | schema:alternateName | Botany Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt |
191 | ″ | schema:name | Botany Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt |
192 | ″ | rdf:type | schema:Organization |