High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-04

AUTHORS

Todd Z. DeSantis, Eoin L. Brodie, Jordan P. Moberg, Ingrid X. Zubieta, Yvette M. Piceno, Gary L. Andersen

ABSTRACT

Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology. More... »

PAGES

371-383

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00248-006-9134-9

DOI

http://dx.doi.org/10.1007/s00248-006-9134-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012794989

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17334858


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aerosols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodiversity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microarray Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA", 
            "Lawrence Berkeley National Laboratory, Virtual Institute for Microbial Stress and Survival, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeSantis", 
        "givenName": "Todd Z.", 
        "id": "sg:person.01333365763.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333365763.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brodie", 
        "givenName": "Eoin L.", 
        "id": "sg:person.0600135634.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600135634.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moberg", 
        "givenName": "Jordan P.", 
        "id": "sg:person.01336722154.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336722154.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zubieta", 
        "givenName": "Ingrid X.", 
        "id": "sg:person.0666053032.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666053032.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piceno", 
        "givenName": "Yvette M.", 
        "id": "sg:person.01271326413.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271326413.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA", 
            "Lawrence Berkeley National Laboratory, Virtual Institute for Microbial Stress and Survival, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andersen", 
        "givenName": "Gary L.", 
        "id": "sg:person.01160741113.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160741113.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1112665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001141113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1472-765x.1998.00322.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.5.2300-2306.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002736927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gnf100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004093941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(03)00140-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004668511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(03)00140-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004668511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.6.3035-3045.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005222350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5274(03)00052-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006604184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-5274(03)00052-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006604184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.3.1501-1506.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008400827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.69.9.5609-5621.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008670804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.69.11.6768-6776.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010015744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(98)00103-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012122228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.5.2535-2541.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012300785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012309503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.1.588-596.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013786769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018946462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.10.4399-4406.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019502735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.68.4.686-691.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021752316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7358-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022132261", 
          "https://doi.org/10.1007/978-94-015-7358-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7358-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022132261", 
          "https://doi.org/10.1007/978-94-015-7358-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7012(01)00370-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022171370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-2-reviews0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023733744", 
          "https://doi.org/10.1186/gb-2002-3-2-reviews0003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.12.5780-5790.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025502113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.10.5064-5081.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029374214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.7.4216-4221.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029403422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.7.2732-2742.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030552876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.12.7161-7172.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031330847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.femsle.2005.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031497114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.femsle.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034378622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.03006-05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034568952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.1.411-419.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037320559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.184.22.6225-6234.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037368703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.1.235-244.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038087131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.41.2.558-563.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038722018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038920266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mcpr.2001.0397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039289922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.4.2026-2035.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040932283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2005.05.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047249243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2005.05.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047249243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047454621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.4.e22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.02441-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048253030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.4.2145-2153.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048681607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049559616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1462-2920.2003.00541.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.3.1175-1182.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es048236g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055497069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es048236g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055497069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10475194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5287.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.173.14.4371-4378.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062719537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/05384ps01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069097050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074274095", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074543209", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074544770", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/00294st05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074720220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077966938", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078244387", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082437579", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083315013", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083324414", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083324436", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04", 
    "datePublishedReg": "2007-04-01", 
    "description": "Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00248-006-9134-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4436647", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1081458", 
        "issn": [
          "0095-3628", 
          "1432-184X"
        ], 
        "name": "Microbial Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment", 
    "pagination": "371-383", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3cf42d760818f256fdf4f9cd5b43f308c051e1fb0dc881def51401d36a8a50d0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17334858"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7500663"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00248-006-9134-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012794989"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00248-006-9134-9", 
      "https://app.dimensions.ai/details/publication/pub.1012794989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00248-006-9134-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00248-006-9134-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00248-006-9134-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00248-006-9134-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00248-006-9134-9'


 

This table displays all metadata directly associated to this object as RDF triples.

337 TRIPLES      21 PREDICATES      103 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00248-006-9134-9 schema:about N182243118c644b0ba52bbecfdc4873a4
2 N28ca8fd9e3634af2b1d445432485bc4c
3 N3005bb8aa35647e6bbea6d071c418655
4 N319a6535d19b4108be7f244adfacfd82
5 N3ac6f2bab376404bb6ff99d5516dcf24
6 N3b2ef352a5af43baba2c814ac98da58f
7 N577a916bf33744c4ad427f8ffaa61135
8 N64adefa1a2344e359eda35a08c1d0a19
9 N6727850d28974939b645bcc6da696336
10 N6eef045f20d140d6af7b5a992ed9139b
11 N92420799bab04f53887050662a2ca3ed
12 Nb24dd0102ddc446dacc989b8f4775399
13 Nb30a5acea7a7428e8a5abc71f0010328
14 Nb937e580607b498484cfe51ade0de081
15 Ne64e8f499db348c3a008e8019f44e083
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author Nfe839d8ecf9b48839ab6a24ca0582243
19 schema:citation sg:pub.10.1007/978-94-015-7358-0
20 sg:pub.10.1186/gb-2002-3-2-reviews0003
21 https://app.dimensions.ai/details/publication/pub.1074274095
22 https://app.dimensions.ai/details/publication/pub.1074543209
23 https://app.dimensions.ai/details/publication/pub.1074544770
24 https://app.dimensions.ai/details/publication/pub.1077966938
25 https://app.dimensions.ai/details/publication/pub.1078244387
26 https://app.dimensions.ai/details/publication/pub.1082437579
27 https://app.dimensions.ai/details/publication/pub.1083315013
28 https://app.dimensions.ai/details/publication/pub.1083324414
29 https://app.dimensions.ai/details/publication/pub.1083324436
30 https://doi.org/10.1006/mcpr.2001.0397
31 https://doi.org/10.1016/j.femsle.2005.03.016
32 https://doi.org/10.1016/j.femsle.2005.04.002
33 https://doi.org/10.1016/j.watres.2005.05.044
34 https://doi.org/10.1016/s0167-7012(01)00370-0
35 https://doi.org/10.1016/s0167-7012(03)00140-4
36 https://doi.org/10.1016/s0168-1656(98)00103-5
37 https://doi.org/10.1016/s1369-5274(03)00052-3
38 https://doi.org/10.1021/es048236g
39 https://doi.org/10.1046/j.1462-2920.2003.00541.x
40 https://doi.org/10.1046/j.1472-765x.1998.00322.x
41 https://doi.org/10.1080/01621459.1992.10475194
42 https://doi.org/10.1093/bioinformatics/btg200
43 https://doi.org/10.1093/bioinformatics/bth226
44 https://doi.org/10.1093/nar/29.4.e22
45 https://doi.org/10.1093/nar/gkh293
46 https://doi.org/10.1093/nar/gkl244
47 https://doi.org/10.1093/nar/gnf100
48 https://doi.org/10.1099/ijs.0.02441-0
49 https://doi.org/10.1101/gr.8.3.175
50 https://doi.org/10.1101/gr.8.3.186
51 https://doi.org/10.1126/science.1112665
52 https://doi.org/10.1126/science.274.5287.610
53 https://doi.org/10.1128/aem.03006-05
54 https://doi.org/10.1128/aem.66.3.1175-1182.2000
55 https://doi.org/10.1128/aem.66.7.2732-2742.2000
56 https://doi.org/10.1128/aem.67.1.411-419.2001
57 https://doi.org/10.1128/aem.67.10.4399-4406.2001
58 https://doi.org/10.1128/aem.67.12.5780-5790.2001
59 https://doi.org/10.1128/aem.68.1.235-244.2002
60 https://doi.org/10.1128/aem.68.10.5064-5081.2002
61 https://doi.org/10.1128/aem.68.5.2300-2306.2002
62 https://doi.org/10.1128/aem.68.5.2535-2541.2002
63 https://doi.org/10.1128/aem.68.6.3035-3045.2002
64 https://doi.org/10.1128/aem.69.11.6768-6776.2003
65 https://doi.org/10.1128/aem.69.9.5609-5621.2003
66 https://doi.org/10.1128/aem.70.1.588-596.2004
67 https://doi.org/10.1128/aem.70.12.7161-7172.2004
68 https://doi.org/10.1128/aem.70.7.4216-4221.2004
69 https://doi.org/10.1128/aem.71.3.1501-1506.2005
70 https://doi.org/10.1128/aem.71.4.2026-2035.2005
71 https://doi.org/10.1128/aem.71.4.2145-2153.2005
72 https://doi.org/10.1128/jb.173.14.4371-4378.1991
73 https://doi.org/10.1128/jb.184.22.6225-6234.2002
74 https://doi.org/10.1128/jcm.41.2.558-563.2003
75 https://doi.org/10.1128/mmbr.68.4.686-691.2004
76 https://doi.org/10.2144/00294st05
77 https://doi.org/10.2144/05384ps01
78 schema:datePublished 2007-04
79 schema:datePublishedReg 2007-04-01
80 schema:description Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology.
81 schema:genre research_article
82 schema:inLanguage en
83 schema:isAccessibleForFree false
84 schema:isPartOf N085d59f28df4404e9d309a83cb9035e4
85 N324e032112ca4f098139044662c0a1dd
86 sg:journal.1081458
87 schema:name High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment
88 schema:pagination 371-383
89 schema:productId N14f5a4d0b7d148919cf908ea56a3b576
90 N17455197ac2d4eafad34230bfe44aab2
91 N345adc15e6534ad0a0fd75231f0a93e0
92 N7eedaf52a284407083c658cafa6b6d9a
93 Nfd19e05ab3984729b1182407f0516572
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012794989
95 https://doi.org/10.1007/s00248-006-9134-9
96 schema:sdDatePublished 2019-04-11T14:27
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N75577f2b7fee48a08db06f6aa74e405e
99 schema:url http://link.springer.com/10.1007/s00248-006-9134-9
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N0092c0a6c12b49219eb53894e7e8ff4c rdf:first sg:person.01160741113.38
104 rdf:rest rdf:nil
105 N085d59f28df4404e9d309a83cb9035e4 schema:issueNumber 3
106 rdf:type schema:PublicationIssue
107 N0b8b0e7a61bd4fa0a9099b22dbd1b3c8 rdf:first sg:person.0600135634.15
108 rdf:rest Nae144d6ffdbf44d488345566a1c4d447
109 N14f5a4d0b7d148919cf908ea56a3b576 schema:name doi
110 schema:value 10.1007/s00248-006-9134-9
111 rdf:type schema:PropertyValue
112 N17455197ac2d4eafad34230bfe44aab2 schema:name readcube_id
113 schema:value 3cf42d760818f256fdf4f9cd5b43f308c051e1fb0dc881def51401d36a8a50d0
114 rdf:type schema:PropertyValue
115 N182243118c644b0ba52bbecfdc4873a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Soil Microbiology
117 rdf:type schema:DefinedTerm
118 N28ca8fd9e3634af2b1d445432485bc4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Environmental Monitoring
120 rdf:type schema:DefinedTerm
121 N3005bb8aa35647e6bbea6d071c418655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Molecular Sequence Data
123 rdf:type schema:DefinedTerm
124 N319a6535d19b4108be7f244adfacfd82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Base Sequence
126 rdf:type schema:DefinedTerm
127 N324e032112ca4f098139044662c0a1dd schema:volumeNumber 53
128 rdf:type schema:PublicationVolume
129 N345adc15e6534ad0a0fd75231f0a93e0 schema:name nlm_unique_id
130 schema:value 7500663
131 rdf:type schema:PropertyValue
132 N3ac6f2bab376404bb6ff99d5516dcf24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Microarray Analysis
134 rdf:type schema:DefinedTerm
135 N3b2ef352a5af43baba2c814ac98da58f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Water Microbiology
137 rdf:type schema:DefinedTerm
138 N577a916bf33744c4ad427f8ffaa61135 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aerosols
140 rdf:type schema:DefinedTerm
141 N64adefa1a2344e359eda35a08c1d0a19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Bacteria
143 rdf:type schema:DefinedTerm
144 N6727850d28974939b645bcc6da696336 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Environmental Microbiology
146 rdf:type schema:DefinedTerm
147 N6eef045f20d140d6af7b5a992ed9139b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name RNA, Ribosomal, 16S
149 rdf:type schema:DefinedTerm
150 N75577f2b7fee48a08db06f6aa74e405e schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 N7eedaf52a284407083c658cafa6b6d9a schema:name pubmed_id
153 schema:value 17334858
154 rdf:type schema:PropertyValue
155 N92420799bab04f53887050662a2ca3ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Polymerase Chain Reaction
157 rdf:type schema:DefinedTerm
158 Nae144d6ffdbf44d488345566a1c4d447 rdf:first sg:person.01336722154.86
159 rdf:rest Ncad213f1f9cf4868a086d748d01f4759
160 Nb24dd0102ddc446dacc989b8f4775399 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name DNA, Bacterial
162 rdf:type schema:DefinedTerm
163 Nb30a5acea7a7428e8a5abc71f0010328 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Biodiversity
165 rdf:type schema:DefinedTerm
166 Nb937e580607b498484cfe51ade0de081 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name DNA Primers
168 rdf:type schema:DefinedTerm
169 Ncad213f1f9cf4868a086d748d01f4759 rdf:first sg:person.0666053032.15
170 rdf:rest Nd6b661d22142438295b252413eea86de
171 Nd6b661d22142438295b252413eea86de rdf:first sg:person.01271326413.14
172 rdf:rest N0092c0a6c12b49219eb53894e7e8ff4c
173 Ne64e8f499db348c3a008e8019f44e083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Cloning, Molecular
175 rdf:type schema:DefinedTerm
176 Nfd19e05ab3984729b1182407f0516572 schema:name dimensions_id
177 schema:value pub.1012794989
178 rdf:type schema:PropertyValue
179 Nfe839d8ecf9b48839ab6a24ca0582243 rdf:first sg:person.01333365763.05
180 rdf:rest N0b8b0e7a61bd4fa0a9099b22dbd1b3c8
181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
182 schema:name Biological Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
185 schema:name Genetics
186 rdf:type schema:DefinedTerm
187 sg:grant.4436647 http://pending.schema.org/fundedItem sg:pub.10.1007/s00248-006-9134-9
188 rdf:type schema:MonetaryGrant
189 sg:journal.1081458 schema:issn 0095-3628
190 1432-184X
191 schema:name Microbial Ecology
192 rdf:type schema:Periodical
193 sg:person.01160741113.38 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
194 schema:familyName Andersen
195 schema:givenName Gary L.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160741113.38
197 rdf:type schema:Person
198 sg:person.01271326413.14 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
199 schema:familyName Piceno
200 schema:givenName Yvette M.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271326413.14
202 rdf:type schema:Person
203 sg:person.01333365763.05 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
204 schema:familyName DeSantis
205 schema:givenName Todd Z.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333365763.05
207 rdf:type schema:Person
208 sg:person.01336722154.86 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
209 schema:familyName Moberg
210 schema:givenName Jordan P.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336722154.86
212 rdf:type schema:Person
213 sg:person.0600135634.15 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
214 schema:familyName Brodie
215 schema:givenName Eoin L.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600135634.15
217 rdf:type schema:Person
218 sg:person.0666053032.15 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
219 schema:familyName Zubieta
220 schema:givenName Ingrid X.
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666053032.15
222 rdf:type schema:Person
223 sg:pub.10.1007/978-94-015-7358-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022132261
224 https://doi.org/10.1007/978-94-015-7358-0
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/gb-2002-3-2-reviews0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023733744
227 https://doi.org/10.1186/gb-2002-3-2-reviews0003
228 rdf:type schema:CreativeWork
229 https://app.dimensions.ai/details/publication/pub.1074274095 schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1074543209 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1074544770 schema:CreativeWork
232 https://app.dimensions.ai/details/publication/pub.1077966938 schema:CreativeWork
233 https://app.dimensions.ai/details/publication/pub.1078244387 schema:CreativeWork
234 https://app.dimensions.ai/details/publication/pub.1082437579 schema:CreativeWork
235 https://app.dimensions.ai/details/publication/pub.1083315013 schema:CreativeWork
236 https://app.dimensions.ai/details/publication/pub.1083324414 schema:CreativeWork
237 https://app.dimensions.ai/details/publication/pub.1083324436 schema:CreativeWork
238 https://doi.org/10.1006/mcpr.2001.0397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039289922
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.femsle.2005.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031497114
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.femsle.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034378622
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.watres.2005.05.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047249243
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s0167-7012(01)00370-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022171370
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s0167-7012(03)00140-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004668511
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s0168-1656(98)00103-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012122228
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s1369-5274(03)00052-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006604184
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1021/es048236g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055497069
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1046/j.1462-2920.2003.00541.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049710884
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1046/j.1472-765x.1998.00322.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002497171
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1080/01621459.1992.10475194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304223
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/btg200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049559616
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/bth226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012309503
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/nar/29.4.e22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784642
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/gkh293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047454621
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/nar/gkl244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018946462
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1093/nar/gnf100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004093941
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1099/ijs.0.02441-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784774
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1101/gr.8.3.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048253030
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1101/gr.8.3.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038920266
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1126/science.1112665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001141113
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.274.5287.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554585
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1128/aem.03006-05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568952
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1128/aem.66.3.1175-1182.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050182468
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1128/aem.66.7.2732-2742.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030552876
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1128/aem.67.1.411-419.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037320559
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1128/aem.67.10.4399-4406.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019502735
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1128/aem.67.12.5780-5790.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025502113
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1128/aem.68.1.235-244.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038087131
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1128/aem.68.10.5064-5081.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029374214
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1128/aem.68.5.2300-2306.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002736927
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1128/aem.68.5.2535-2541.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012300785
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1128/aem.68.6.3035-3045.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005222350
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1128/aem.69.11.6768-6776.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010015744
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1128/aem.69.9.5609-5621.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008670804
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1128/aem.70.1.588-596.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013786769
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1128/aem.70.12.7161-7172.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031330847
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1128/aem.70.7.4216-4221.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029403422
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1128/aem.71.3.1501-1506.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008400827
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1128/aem.71.4.2026-2035.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040932283
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1128/aem.71.4.2145-2153.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048681607
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1128/jb.173.14.4371-4378.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062719537
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1128/jb.184.22.6225-6234.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037368703
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1128/jcm.41.2.558-563.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038722018
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1128/mmbr.68.4.686-691.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021752316
329 rdf:type schema:CreativeWork
330 https://doi.org/10.2144/00294st05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074720220
331 rdf:type schema:CreativeWork
332 https://doi.org/10.2144/05384ps01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097050
333 rdf:type schema:CreativeWork
334 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
335 schema:name Lawrence Berkeley National Laboratory, Center for Environmental Biotechnology, 1 Cyclotron Road, Mail Stop 70A-3317, 94720, Berkeley, CA, USA
336 Lawrence Berkeley National Laboratory, Virtual Institute for Microbial Stress and Survival, 94720, Berkeley, CA, USA
337 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...