On Interacting Systems of Hilbert-Space-Valued Diffusions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

A. G. Bhatt, G. Kallianpur, R. L. Karandikar, J. Xiong

ABSTRACT

A nonlinear Hilbert-space-valued stochastic differential equation where L-1 (L being the generator of the evolution semigroup) is not nuclear is investigated in this paper. Under the assumption of nuclearity of L-1 , the existence of a unique solution lying in the Hilbert space H has been shown by Dawson in an early paper. When L-1 is not nuclear, a solution in most cases lies not in H but in a larger Hilbert, Banach, or nuclear space. Part of the motivation of this paper is to prove under suitable conditions that a unique strong solution can still be found to lie in the space H itself. Uniqueness of the weak solution is proved without moment assumptions on the initial random variable. A second problem considered is the asymptotic behavior of the sequence of empirical measures determined by the solutions of an interacting system of H -valued diffusions. It is shown that the sequence converges in probability to the unique solution Λ0 of the martingale problem posed by the corresponding McKean—Vlasov equation. More... »

PAGES

151-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002459900072

DOI

http://dx.doi.org/10.1007/s002459900072

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025039530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Indian Statistical Institute, New Delhi, India, IN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatt", 
        "givenName": "A. G.", 
        "id": "sg:person.010420272033.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010420272033.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "Center for Stochastic Processes, University of North Carolina,  Chapel Hill, NC 27599-3260, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kallianpur", 
        "givenName": "G.", 
        "id": "sg:person.011034352655.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034352655.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Indian Statistical Institute, New Delhi, India, IN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karandikar", 
        "givenName": "R. L.", 
        "id": "sg:person.012527752725.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527752725.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina System", 
          "id": "https://www.grid.ac/institutes/grid.410711.2", 
          "name": [
            "Center for Stochastic Processes, University of North Carolina,  Chapel Hill, NC 27599-3260, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "J.", 
        "id": "sg:person.07637241267.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637241267.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-04", 
    "datePublishedReg": "1998-04-01", 
    "description": "A nonlinear Hilbert-space-valued stochastic differential equation where L-1 (L being the generator of the evolution semigroup) is not nuclear is investigated in this paper. Under the assumption of nuclearity of L-1 , the existence of a unique solution lying in the Hilbert space H has been shown by Dawson in an early paper. When L-1 is not nuclear, a solution in most cases lies not in H but in a larger Hilbert, Banach, or nuclear space. Part of the motivation of this paper is to prove under suitable conditions that a unique strong solution can still be found to lie in the space H itself. Uniqueness of the weak solution is proved without moment assumptions on the initial random variable. A second problem considered is the asymptotic behavior of the sequence of empirical measures determined by the solutions of an interacting system of H -valued diffusions. It is shown that the sequence converges in probability to the unique solution \u039b0 of the martingale problem posed by the corresponding McKean\u2014Vlasov equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002459900072", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "On Interacting Systems of Hilbert-Space-Valued Diffusions", 
    "pagination": "151-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77498a6785cfcd4e7a5a643d3a636fc00c92dc5d56f769b879aad80a6dd4d345"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002459900072"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025039530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002459900072", 
      "https://app.dimensions.ai/details/publication/pub.1025039530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002459900072"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002459900072'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002459900072'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002459900072'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002459900072'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002459900072 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5cd5c50e1a904f47abd2af7ea553e1fe
4 schema:datePublished 1998-04
5 schema:datePublishedReg 1998-04-01
6 schema:description A nonlinear Hilbert-space-valued stochastic differential equation where L-1 (L being the generator of the evolution semigroup) is not nuclear is investigated in this paper. Under the assumption of nuclearity of L-1 , the existence of a unique solution lying in the Hilbert space H has been shown by Dawson in an early paper. When L-1 is not nuclear, a solution in most cases lies not in H but in a larger Hilbert, Banach, or nuclear space. Part of the motivation of this paper is to prove under suitable conditions that a unique strong solution can still be found to lie in the space H itself. Uniqueness of the weak solution is proved without moment assumptions on the initial random variable. A second problem considered is the asymptotic behavior of the sequence of empirical measures determined by the solutions of an interacting system of H -valued diffusions. It is shown that the sequence converges in probability to the unique solution Λ0 of the martingale problem posed by the corresponding McKean—Vlasov equation.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb08ecd275f774d60b4dba6ff072b29b5
11 Nd2f77d2fccfc4ca1aa0df4812351c1b9
12 sg:journal.1120592
13 schema:name On Interacting Systems of Hilbert-Space-Valued Diffusions
14 schema:pagination 151-188
15 schema:productId N1139415c221f44a082f2fe0257f97055
16 N3a72ba567d9147998640d9b489ec3673
17 N727f9bf84e3e48288fac9e07a3b1573f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025039530
19 https://doi.org/10.1007/s002459900072
20 schema:sdDatePublished 2019-04-10T22:32
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N057161c518434a1c9f7a48987338b0d6
23 schema:url http://link.springer.com/10.1007%2Fs002459900072
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N057161c518434a1c9f7a48987338b0d6 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N1139415c221f44a082f2fe0257f97055 schema:name readcube_id
30 schema:value 77498a6785cfcd4e7a5a643d3a636fc00c92dc5d56f769b879aad80a6dd4d345
31 rdf:type schema:PropertyValue
32 N2589102640804f95831a0f7cf3a44783 rdf:first sg:person.07637241267.42
33 rdf:rest rdf:nil
34 N3a72ba567d9147998640d9b489ec3673 schema:name dimensions_id
35 schema:value pub.1025039530
36 rdf:type schema:PropertyValue
37 N48cf6a66604a4a749095355f41b08fcb rdf:first sg:person.011034352655.74
38 rdf:rest N78a4223c190841ba857c0cf26ced07f6
39 N5cd5c50e1a904f47abd2af7ea553e1fe rdf:first sg:person.010420272033.46
40 rdf:rest N48cf6a66604a4a749095355f41b08fcb
41 N727f9bf84e3e48288fac9e07a3b1573f schema:name doi
42 schema:value 10.1007/s002459900072
43 rdf:type schema:PropertyValue
44 N78a4223c190841ba857c0cf26ced07f6 rdf:first sg:person.012527752725.95
45 rdf:rest N2589102640804f95831a0f7cf3a44783
46 Nb08ecd275f774d60b4dba6ff072b29b5 schema:volumeNumber 37
47 rdf:type schema:PublicationVolume
48 Nd2f77d2fccfc4ca1aa0df4812351c1b9 schema:issueNumber 2
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1120592 schema:issn 0095-4616
57 1432-0606
58 schema:name Applied Mathematics & Optimization
59 rdf:type schema:Periodical
60 sg:person.010420272033.46 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
61 schema:familyName Bhatt
62 schema:givenName A. G.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010420272033.46
64 rdf:type schema:Person
65 sg:person.011034352655.74 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
66 schema:familyName Kallianpur
67 schema:givenName G.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034352655.74
69 rdf:type schema:Person
70 sg:person.012527752725.95 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
71 schema:familyName Karandikar
72 schema:givenName R. L.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012527752725.95
74 rdf:type schema:Person
75 sg:person.07637241267.42 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
76 schema:familyName Xiong
77 schema:givenName J.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637241267.42
79 rdf:type schema:Person
80 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
81 schema:name Indian Statistical Institute, New Delhi, India, IN
82 rdf:type schema:Organization
83 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
84 schema:name Center for Stochastic Processes, University of North Carolina, Chapel Hill, NC 27599-3260, USA, US
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...