Optimal Asset Liquidation with Multiplicative Transient Price Impact View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-24

AUTHORS

Dirk Becherer, Todor Bilarev, Peter Frentrup

ABSTRACT

We study a multiplicative transient price impact model for an illiquid financial market, where trading causes price impact which is multiplicative in relation to the current price, transient over time with finite rate of resilience, and non-linear in the order size. We construct explicit solutions for the optimal control and the value function of singular optimal control problems to maximize expected discounted proceeds from liquidating a given asset position. A free boundary problem, describing the optimal control, is solved for two variants of the problem where admissible controls are monotone or of bounded variation. More... »

PAGES

643-676

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00245-017-9418-0

DOI

http://dx.doi.org/10.1007/s00245-017-9418-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085577804


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Institute of Mathematics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becherer", 
        "givenName": "Dirk", 
        "id": "sg:person.014552602164.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552602164.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Institute of Mathematics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bilarev", 
        "givenName": "Todor", 
        "id": "sg:person.013105656521.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105656521.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Institute of Mathematics, Humboldt-Universit\u00e4t zu Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frentrup", 
        "givenName": "Peter", 
        "id": "sg:person.014500617521.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500617521.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00780-006-0025-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020877256", 
          "https://doi.org/10.1007/s00780-006-0025-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-017-0346-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092444791", 
          "https://doi.org/10.1007/s00780-017-0346-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-016-0295-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037630696", 
          "https://doi.org/10.1007/s00780-016-0295-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001860000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021426905", 
          "https://doi.org/10.1007/s001860000048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002459900094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015091149", 
          "https://doi.org/10.1007/s002459900094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-013-0211-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002547251", 
          "https://doi.org/10.1007/s00780-013-0211-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002080050220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018168503", 
          "https://doi.org/10.1007/s002080050220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05265-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038043050", 
          "https://doi.org/10.1007/978-3-662-05265-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-24", 
    "datePublishedReg": "2017-05-24", 
    "description": "We study a multiplicative transient price impact model for an illiquid financial market, where trading causes price impact which is multiplicative in relation to the current price, transient over time with finite rate of resilience, and non-linear in the order size. We construct explicit solutions for the optimal control and the value function of singular optimal control problems to maximize expected discounted proceeds from liquidating a given asset position. A free boundary problem, describing the optimal control, is solved for two variants of the problem where admissible controls are monotone or of bounded variation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00245-017-9418-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "optimal control", 
      "singular optimal control problems", 
      "optimal control problem", 
      "illiquid financial market", 
      "free boundary problem", 
      "admissible controls", 
      "transient price impact", 
      "price impact model", 
      "control problem", 
      "explicit solution", 
      "boundary problem", 
      "value function", 
      "problem", 
      "financial markets", 
      "order size", 
      "finite rate", 
      "asset liquidation", 
      "price impact", 
      "impact model", 
      "solution", 
      "model", 
      "control", 
      "function", 
      "current prices", 
      "position", 
      "prices", 
      "size", 
      "asset position", 
      "relation", 
      "variation", 
      "time", 
      "trading", 
      "variants", 
      "liquidation", 
      "market", 
      "impact", 
      "proceeds", 
      "rate", 
      "resilience"
    ], 
    "name": "Optimal Asset Liquidation with Multiplicative Transient Price Impact", 
    "pagination": "643-676", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085577804"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00245-017-9418-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00245-017-9418-0", 
      "https://app.dimensions.ai/details/publication/pub.1085577804"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_753.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00245-017-9418-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9418-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9418-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9418-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9418-0'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      71 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00245-017-9418-0 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8dd405cff72d443b97cb779a25d49f6a
4 schema:citation sg:pub.10.1007/978-3-662-05265-5
5 sg:pub.10.1007/s001860000048
6 sg:pub.10.1007/s002080050220
7 sg:pub.10.1007/s002459900094
8 sg:pub.10.1007/s00780-006-0025-1
9 sg:pub.10.1007/s00780-013-0211-x
10 sg:pub.10.1007/s00780-016-0295-1
11 sg:pub.10.1007/s00780-017-0346-2
12 schema:datePublished 2017-05-24
13 schema:datePublishedReg 2017-05-24
14 schema:description We study a multiplicative transient price impact model for an illiquid financial market, where trading causes price impact which is multiplicative in relation to the current price, transient over time with finite rate of resilience, and non-linear in the order size. We construct explicit solutions for the optimal control and the value function of singular optimal control problems to maximize expected discounted proceeds from liquidating a given asset position. A free boundary problem, describing the optimal control, is solved for two variants of the problem where admissible controls are monotone or of bounded variation.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N73a50f76141240ba8dfd58aa46fe0a1f
18 Nabe04dc2a365474aa2a57482a3d6389a
19 sg:journal.1120592
20 schema:keywords admissible controls
21 asset liquidation
22 asset position
23 boundary problem
24 control
25 control problem
26 current prices
27 explicit solution
28 financial markets
29 finite rate
30 free boundary problem
31 function
32 illiquid financial market
33 impact
34 impact model
35 liquidation
36 market
37 model
38 optimal control
39 optimal control problem
40 order size
41 position
42 price impact
43 price impact model
44 prices
45 problem
46 proceeds
47 rate
48 relation
49 resilience
50 singular optimal control problems
51 size
52 solution
53 time
54 trading
55 transient price impact
56 value function
57 variants
58 variation
59 schema:name Optimal Asset Liquidation with Multiplicative Transient Price Impact
60 schema:pagination 643-676
61 schema:productId Ne8927f5bac58404b9496f405dccb90b3
62 Ne9118d7018cb4405bdd7c60797414d54
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085577804
64 https://doi.org/10.1007/s00245-017-9418-0
65 schema:sdDatePublished 2022-08-04T17:05
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N62247ee0b9d6424d81693861f5ba8545
68 schema:url https://doi.org/10.1007/s00245-017-9418-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N62247ee0b9d6424d81693861f5ba8545 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N73a50f76141240ba8dfd58aa46fe0a1f schema:issueNumber 3
75 rdf:type schema:PublicationIssue
76 N8668cc62d73d497f8885527dff0ec316 rdf:first sg:person.014500617521.99
77 rdf:rest rdf:nil
78 N8dd405cff72d443b97cb779a25d49f6a rdf:first sg:person.014552602164.82
79 rdf:rest Nd453dcd3e2154cdb8e60ca755152a432
80 Nabe04dc2a365474aa2a57482a3d6389a schema:volumeNumber 78
81 rdf:type schema:PublicationVolume
82 Nd453dcd3e2154cdb8e60ca755152a432 rdf:first sg:person.013105656521.52
83 rdf:rest N8668cc62d73d497f8885527dff0ec316
84 Ne8927f5bac58404b9496f405dccb90b3 schema:name dimensions_id
85 schema:value pub.1085577804
86 rdf:type schema:PropertyValue
87 Ne9118d7018cb4405bdd7c60797414d54 schema:name doi
88 schema:value 10.1007/s00245-017-9418-0
89 rdf:type schema:PropertyValue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
94 schema:name Applied Mathematics
95 rdf:type schema:DefinedTerm
96 sg:journal.1120592 schema:issn 0095-4616
97 1432-0606
98 schema:name Applied Mathematics & Optimization
99 schema:publisher Springer Nature
100 rdf:type schema:Periodical
101 sg:person.013105656521.52 schema:affiliation grid-institutes:grid.7468.d
102 schema:familyName Bilarev
103 schema:givenName Todor
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105656521.52
105 rdf:type schema:Person
106 sg:person.014500617521.99 schema:affiliation grid-institutes:grid.7468.d
107 schema:familyName Frentrup
108 schema:givenName Peter
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500617521.99
110 rdf:type schema:Person
111 sg:person.014552602164.82 schema:affiliation grid-institutes:grid.7468.d
112 schema:familyName Becherer
113 schema:givenName Dirk
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552602164.82
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-662-05265-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038043050
117 https://doi.org/10.1007/978-3-662-05265-5
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s001860000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021426905
120 https://doi.org/10.1007/s001860000048
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s002080050220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018168503
123 https://doi.org/10.1007/s002080050220
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s002459900094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015091149
126 https://doi.org/10.1007/s002459900094
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00780-006-0025-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020877256
129 https://doi.org/10.1007/s00780-006-0025-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00780-013-0211-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002547251
132 https://doi.org/10.1007/s00780-013-0211-x
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00780-016-0295-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037630696
135 https://doi.org/10.1007/s00780-016-0295-1
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00780-017-0346-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092444791
138 https://doi.org/10.1007/s00780-017-0346-2
139 rdf:type schema:CreativeWork
140 grid-institutes:grid.7468.d schema:alternateName Institute of Mathematics, Humboldt-Universität zu Berlin, Berlin, Germany
141 schema:name Institute of Mathematics, Humboldt-Universität zu Berlin, Berlin, Germany
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...