Ontology type: schema:ScholarlyArticle Open Access: True
2018-08
AUTHORSGiuseppe Buttazzo, Thierry Champion, Luigi De Pascale
ABSTRACTWe consider some repulsive multimarginal optimal transportation problems which include, as a particular case, the Coulomb cost. We prove a regularity property of the minimizers (optimal transportation plan) from which we deduce existence and some basic regularity of a maximizer for the dual problem (Kantorovich potential). This is then applied to obtain some estimates of the cost and to the study of continuity properties. More... »
PAGES185-200
http://scigraph.springernature.com/pub.10.1007/s00245-017-9403-7
DOIhttp://dx.doi.org/10.1007/s00245-017-9403-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1083893102
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Pisa",
"id": "https://www.grid.ac/institutes/grid.5395.a",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Pisa, Largo B. Pontecorvo 5, 56127, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Buttazzo",
"givenName": "Giuseppe",
"id": "sg:person.07630071357.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07630071357.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universite De Toulon Et Du Var",
"id": "https://www.grid.ac/institutes/grid.12611.35",
"name": [
"Laboratoire IMATH, Universit\u00e9 de Toulon, CS 60584, 83041, Toulon cedex 9, France"
],
"type": "Organization"
},
"familyName": "Champion",
"givenName": "Thierry",
"id": "sg:person.013621772332.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621772332.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Florence",
"id": "https://www.grid.ac/institutes/grid.8404.8",
"name": [
"Dipartimento di Matematica e Informatica, Universit\u00e0 di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy"
],
"type": "Organization"
},
"familyName": "De Pascale",
"givenName": "Luigi",
"id": "sg:person.016165104207.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016165104207.57"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/(sici)1097-0312(199801)51:1<23::aid-cpa2>3.0.co;2-h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001591405"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4821351",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002450353"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.87.125106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017073874"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.87.125106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017073874"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-011-0421-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025199143",
"https://doi.org/10.1007/s00526-011-0421-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.21437",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028221531"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1039/c0cp01061h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028471642"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1039/c0cp01061h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028471642"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.103.166402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031289229"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.103.166402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031289229"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.21430",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032833824"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/qua.560240302",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034763376"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00532047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035215282",
"https://doi.org/10.1007/bf00532047"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.85.062502",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043546311"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.85.062502",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043546311"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1631-073x(02)02341-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045577355"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/cocv:2008006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056952589"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/m2an/2015035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057032627"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.136.b864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060429813"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.136.b864",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060429813"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.140.a1133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060431417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.140.a1133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060431417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.59.51",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060494904"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.59.51",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060494904"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.60.4387",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060495650"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.60.4387",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060495650"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.75.042511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060503181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.75.042511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060503181"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/100804917",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062859248"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/dcds.2016.36.2653",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071735490"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/sm209-2-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072185251"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-08",
"datePublishedReg": "2018-08-01",
"description": "We consider some repulsive multimarginal optimal transportation problems which include, as a particular case, the Coulomb cost. We prove a regularity property of the minimizers (optimal transportation plan) from which we deduce existence and some basic regularity of a maximizer for the dual problem (Kantorovich potential). This is then applied to obtain some estimates of the cost and to the study of continuity properties.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00245-017-9403-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6852802",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1120592",
"issn": [
"0095-4616",
"1432-0606"
],
"name": "Applied Mathematics & Optimization",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "78"
}
],
"name": "Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs",
"pagination": "185-200",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"82f95a6793cb92da89b0bc493d6515bc3500d237fb3ec42912befb1febfdff1a"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00245-017-9403-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1083893102"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00245-017-9403-7",
"https://app.dimensions.ai/details/publication/pub.1083893102"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70032_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00245-017-9403-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9403-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9403-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9403-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00245-017-9403-7'
This table displays all metadata directly associated to this object as RDF triples.
151 TRIPLES
21 PREDICATES
49 URIs
19 LITERALS
7 BLANK NODES