First and Second Order Necessary Conditions for Stochastic Optimal Control Problems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-06

AUTHORS

J. Frédéric Bonnans, Francisco J. Silva

ABSTRACT

In this work we consider a stochastic optimal control problem with either convex control constraints or finitely many equality and inequality constraints over the final state. Using the variational approach, we are able to obtain first and second order expansions for the state and cost function, around a local minimum. This fact allows us to prove general first order necessary condition and, under a geometrical assumption over the constraint set, second order necessary conditions are also established. We end by giving second order optimality conditions for problems with constraints on expectations of the final state. More... »

PAGES

403-439

References to SciGraph publications

  • 1980. Brownian Motion in NONE
  • 2009-02-24. General necessary conditions for optimal control of stochastic systems in STOCHASTIC SYSTEMS: MODELING, IDENTIFICATION AND OPTIMIZATION, II
  • 2000. Perturbation Analysis of Optimization Problems in NONE
  • 1976. Integral functionals, normal integrands and measurable selections in NONLINEAR OPERATORS AND THE CALCULUS OF VARIATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00245-012-9162-4

    DOI

    http://dx.doi.org/10.1007/s00245-012-9162-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017346917


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique", 
              "id": "https://www.grid.ac/institutes/grid.10877.39", 
              "name": [
                "INRIA-Saclay and CMAP, \u00c9cole Polytechnique, 91128, Palaiseau, France", 
                "Laboratoire de Finance des March\u00e9s d\u2019\u00c9nergie, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonnans", 
            "givenName": "J. Fr\u00e9d\u00e9ric", 
            "id": "sg:person.012551325703.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012551325703.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Dipartimento di Matematica Guido Castelnuovo, 00185, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "Francisco J.", 
            "id": "sg:person.013572566767.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013572566767.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/17442509108833715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004234272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0079944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013895478", 
              "https://doi.org/10.1007/bfb0079944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605308308820297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014226114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0120743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014569035", 
              "https://doi.org/10.1007/bfb0120743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0120743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014569035", 
              "https://doi.org/10.1007/bfb0120743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014704590", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1394-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014704590", 
              "https://doi.org/10.1007/978-1-4612-1394-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1394-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014704590", 
              "https://doi.org/10.1007/978-1-4612-1394-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0016-0032(83)90059-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019019751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-1236(76)90017-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022830116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01630568508816197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023674131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(67)90163-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032664191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605308308820301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033205456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(65)90070-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045668943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6030-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051869539", 
              "https://doi.org/10.1007/978-1-4612-6030-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6030-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051869539", 
              "https://doi.org/10.1007/978-1-4612-6030-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17442509008833645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053513773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/memo/0167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059343216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0303031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0310041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062843032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0328054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062844229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1020004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1023062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012992240722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-50-01713-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064416779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1951.1.525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069062189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/02940615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070930897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/pamq.2007.v3.n2.a7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072463499"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-06", 
        "datePublishedReg": "2012-06-01", 
        "description": "In this work we consider a stochastic optimal control problem with either convex control constraints or finitely many equality and inequality constraints over the final state. Using the variational approach, we are able to obtain first and second order expansions for the state and cost function, around a local minimum. This fact allows us to prove general first order necessary condition and, under a geometrical assumption over the constraint set, second order necessary conditions are also established. We end by giving second order optimality conditions for problems with constraints on expectations of the final state.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00245-012-9162-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1120592", 
            "issn": [
              "0095-4616", 
              "1432-0606"
            ], 
            "name": "Applied Mathematics & Optimization", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "name": "First and Second Order Necessary Conditions for Stochastic Optimal Control Problems", 
        "pagination": "403-439", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "52a5ca759a2e85625150ae55d21ea9e25df1f9159768a1d0718989479846d753"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00245-012-9162-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017346917"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00245-012-9162-4", 
          "https://app.dimensions.ai/details/publication/pub.1017346917"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000511.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00245-012-9162-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00245-012-9162-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00245-012-9162-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00245-012-9162-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00245-012-9162-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00245-012-9162-4 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N3d309cd2792a4323b9aa535437b68587
    4 schema:citation sg:pub.10.1007/978-1-4612-1394-9
    5 sg:pub.10.1007/978-1-4612-6030-1
    6 sg:pub.10.1007/bfb0079944
    7 sg:pub.10.1007/bfb0120743
    8 https://app.dimensions.ai/details/publication/pub.1014704590
    9 https://doi.org/10.1016/0016-0032(83)90059-5
    10 https://doi.org/10.1016/0022-1236(76)90017-3
    11 https://doi.org/10.1016/0022-247x(65)90070-3
    12 https://doi.org/10.1016/0022-247x(67)90163-1
    13 https://doi.org/10.1080/01630568508816197
    14 https://doi.org/10.1080/03605308308820297
    15 https://doi.org/10.1080/03605308308820301
    16 https://doi.org/10.1080/17442509008833645
    17 https://doi.org/10.1080/17442509108833715
    18 https://doi.org/10.1090/memo/0167
    19 https://doi.org/10.1137/0303031
    20 https://doi.org/10.1137/0310041
    21 https://doi.org/10.1137/0328054
    22 https://doi.org/10.1137/1020004
    23 https://doi.org/10.1137/1023062
    24 https://doi.org/10.1137/s0363012992240722
    25 https://doi.org/10.1215/s0012-7094-50-01713-3
    26 https://doi.org/10.2140/pjm.1951.1.525
    27 https://doi.org/10.2969/jmsj/02940615
    28 https://doi.org/10.4310/pamq.2007.v3.n2.a7
    29 schema:datePublished 2012-06
    30 schema:datePublishedReg 2012-06-01
    31 schema:description In this work we consider a stochastic optimal control problem with either convex control constraints or finitely many equality and inequality constraints over the final state. Using the variational approach, we are able to obtain first and second order expansions for the state and cost function, around a local minimum. This fact allows us to prove general first order necessary condition and, under a geometrical assumption over the constraint set, second order necessary conditions are also established. We end by giving second order optimality conditions for problems with constraints on expectations of the final state.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N82f17d39ed004bd5bc2d4e398bf3577f
    36 Nda9d70330cd94a3c8215df69c2244bff
    37 sg:journal.1120592
    38 schema:name First and Second Order Necessary Conditions for Stochastic Optimal Control Problems
    39 schema:pagination 403-439
    40 schema:productId N8fd90cfc00964fe685bd148edbeb42d5
    41 N953df4a6e16f4587b0f78827bcfb9cda
    42 Nf2e594b2859a4f9f87f2fd1477171ca3
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017346917
    44 https://doi.org/10.1007/s00245-012-9162-4
    45 schema:sdDatePublished 2019-04-10T18:20
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nead53009928142129c04f69819af5721
    48 schema:url http://link.springer.com/10.1007%2Fs00245-012-9162-4
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N3d309cd2792a4323b9aa535437b68587 rdf:first sg:person.012551325703.78
    53 rdf:rest Ne8ab5f5737a84a6c89c9d195ae581597
    54 N82f17d39ed004bd5bc2d4e398bf3577f schema:issueNumber 3
    55 rdf:type schema:PublicationIssue
    56 N8fd90cfc00964fe685bd148edbeb42d5 schema:name readcube_id
    57 schema:value 52a5ca759a2e85625150ae55d21ea9e25df1f9159768a1d0718989479846d753
    58 rdf:type schema:PropertyValue
    59 N953df4a6e16f4587b0f78827bcfb9cda schema:name doi
    60 schema:value 10.1007/s00245-012-9162-4
    61 rdf:type schema:PropertyValue
    62 Naaa1bd70440044eeb67b8e616607f16b schema:name Dipartimento di Matematica Guido Castelnuovo, 00185, Rome, Italy
    63 rdf:type schema:Organization
    64 Nda9d70330cd94a3c8215df69c2244bff schema:volumeNumber 65
    65 rdf:type schema:PublicationVolume
    66 Ne8ab5f5737a84a6c89c9d195ae581597 rdf:first sg:person.013572566767.43
    67 rdf:rest rdf:nil
    68 Nead53009928142129c04f69819af5721 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nf2e594b2859a4f9f87f2fd1477171ca3 schema:name dimensions_id
    71 schema:value pub.1017346917
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Applied Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1120592 schema:issn 0095-4616
    80 1432-0606
    81 schema:name Applied Mathematics & Optimization
    82 rdf:type schema:Periodical
    83 sg:person.012551325703.78 schema:affiliation https://www.grid.ac/institutes/grid.10877.39
    84 schema:familyName Bonnans
    85 schema:givenName J. Frédéric
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012551325703.78
    87 rdf:type schema:Person
    88 sg:person.013572566767.43 schema:affiliation Naaa1bd70440044eeb67b8e616607f16b
    89 schema:familyName Silva
    90 schema:givenName Francisco J.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013572566767.43
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4612-1394-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014704590
    94 https://doi.org/10.1007/978-1-4612-1394-9
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-1-4612-6030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051869539
    97 https://doi.org/10.1007/978-1-4612-6030-1
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bfb0079944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013895478
    100 https://doi.org/10.1007/bfb0079944
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bfb0120743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014569035
    103 https://doi.org/10.1007/bfb0120743
    104 rdf:type schema:CreativeWork
    105 https://app.dimensions.ai/details/publication/pub.1014704590 schema:CreativeWork
    106 https://doi.org/10.1016/0016-0032(83)90059-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019019751
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0022-1236(76)90017-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022830116
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0022-247x(65)90070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045668943
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/0022-247x(67)90163-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032664191
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1080/01630568508816197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674131
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1080/03605308308820297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014226114
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/03605308308820301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033205456
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1080/17442509008833645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053513773
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1080/17442509108833715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004234272
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1090/memo/0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343216
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1137/0303031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842577
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1137/0310041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843032
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1137/0328054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844229
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1137/1020004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861199
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1137/1023062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861621
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1137/s0363012992240722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880955
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1215/s0012-7094-50-01713-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064416779
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2140/pjm.1951.1.525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062189
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2969/jmsj/02940615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930897
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.4310/pamq.2007.v3.n2.a7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072463499
    145 rdf:type schema:CreativeWork
    146 https://www.grid.ac/institutes/grid.10877.39 schema:alternateName École Polytechnique
    147 schema:name INRIA-Saclay and CMAP, École Polytechnique, 91128, Palaiseau, France
    148 Laboratoire de Finance des Marchés d’Énergie, Paris, France
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...