Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-12

AUTHORS

Mantegazza, Mennucci

ABSTRACT

. The paper is concerned with the properties of the distance function from a closed subset of a Riemannian manifold, with particular attention to the set of singularities.

PAGES

1-25

Journal

TITLE

Applied Mathematics & Optimization

ISSUE

1

VOLUME

47

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00245-002-0736-4

DOI

http://dx.doi.org/10.1007/s00245-002-0736-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042544438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore,   Pisa 56126, Italy  mantegaz@sns.it, mennucci@sns.it,, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantegazza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore,   Pisa 56126, Italy  mantegaz@sns.it, mennucci@sns.it,, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mennucci", 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-12", 
    "datePublishedReg": "2002-12-01", 
    "description": "Abstract. The paper is concerned with the properties of the distance function from a closed subset of a Riemannian manifold, with particular attention to the set of singularities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00245-002-0736-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1120592", 
        "issn": [
          "0095-4616", 
          "1432-0606"
        ], 
        "name": "Applied Mathematics & Optimization", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Hamilton\u2014Jacobi Equations and Distance Functions on Riemannian Manifolds", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "caa824fc4b55d9dab22337481641309f891157c66a8d5870bf37d2e0d60fa7ce"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00245-002-0736-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042544438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00245-002-0736-4", 
      "https://app.dimensions.ai/details/publication/pub.1042544438"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00245-002-0736-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00245-002-0736-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00245-002-0736-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00245-002-0736-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00245-002-0736-4'


 

This table displays all metadata directly associated to this object as RDF triples.

56 TRIPLES      19 PREDICATES      25 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00245-002-0736-4 schema:author Nc4105b69bc2f421a8232fe804d43ddad
2 schema:datePublished 2002-12
3 schema:datePublishedReg 2002-12-01
4 schema:description Abstract. The paper is concerned with the properties of the distance function from a closed subset of a Riemannian manifold, with particular attention to the set of singularities.
5 schema:genre research_article
6 schema:inLanguage en
7 schema:isAccessibleForFree true
8 schema:isPartOf N32bb044da9d14f028e6675439700f4db
9 N647c5222cb7743469dd2dac4d628d768
10 sg:journal.1120592
11 schema:name Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds
12 schema:pagination 1-25
13 schema:productId N4ee0a0bcd6424e61a9ae1076421a577d
14 N7e811f954df44f6b97d8c817f99d210c
15 Ncf6d5cd2826b486995530cff9f6f79f1
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544438
17 https://doi.org/10.1007/s00245-002-0736-4
18 schema:sdDatePublished 2019-04-10T19:58
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher N21c119f688d14f04b90deb73ac7fdf3d
21 schema:url http://link.springer.com/10.1007%2Fs00245-002-0736-4
22 sgo:license sg:explorer/license/
23 sgo:sdDataset articles
24 rdf:type schema:ScholarlyArticle
25 N21c119f688d14f04b90deb73ac7fdf3d schema:name Springer Nature - SN SciGraph project
26 rdf:type schema:Organization
27 N32bb044da9d14f028e6675439700f4db schema:volumeNumber 47
28 rdf:type schema:PublicationVolume
29 N4ee0a0bcd6424e61a9ae1076421a577d schema:name dimensions_id
30 schema:value pub.1042544438
31 rdf:type schema:PropertyValue
32 N55fbdc0493c04e44aa89082371a28d42 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
33 schema:familyName Mantegazza
34 rdf:type schema:Person
35 N647c5222cb7743469dd2dac4d628d768 schema:issueNumber 1
36 rdf:type schema:PublicationIssue
37 N7e811f954df44f6b97d8c817f99d210c schema:name readcube_id
38 schema:value caa824fc4b55d9dab22337481641309f891157c66a8d5870bf37d2e0d60fa7ce
39 rdf:type schema:PropertyValue
40 N81e82f773d6144fd90f647c00eea1c54 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
41 schema:familyName Mennucci
42 rdf:type schema:Person
43 Naf33c6837f024bb69a8dc36e58322579 rdf:first N81e82f773d6144fd90f647c00eea1c54
44 rdf:rest rdf:nil
45 Nc4105b69bc2f421a8232fe804d43ddad rdf:first N55fbdc0493c04e44aa89082371a28d42
46 rdf:rest Naf33c6837f024bb69a8dc36e58322579
47 Ncf6d5cd2826b486995530cff9f6f79f1 schema:name doi
48 schema:value 10.1007/s00245-002-0736-4
49 rdf:type schema:PropertyValue
50 sg:journal.1120592 schema:issn 0095-4616
51 1432-0606
52 schema:name Applied Mathematics & Optimization
53 rdf:type schema:Periodical
54 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
55 schema:name Scuola Normale Superiore, Pisa 56126, Italy mantegaz@sns.it, mennucci@sns.it,, IT
56 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...