Retrospective Ecotoxicological Data and Current Information Needs for Terrestrial Vertebrates Residing in Coastal Habitat of the United States View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-08

AUTHORS

B. A. Rattner, K. M. Eisenreich, N. H. Golden, M. A. McKernan, R. L. Hothem, T. W. Custer

ABSTRACT

The Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database was developed to conduct simple searches for ecotoxicological information, examine exposure trends, and identify significant data gaps. The CEE-TV database contains 16,696 data records on free-ranging amphibians, reptiles, birds, and mammals residing in estuarine and coastal habitats of the Atlantic, Gulf, and Pacific coasts, Alaska, Hawaii, and the Great Lakes. Information in the database was derived from over 1800 source documents, representing 483 unique species (about 252,000 individuals), with sample collection dates spanning from 1884 to 2003. The majority of the records contain exposure data (generally contaminant concentrations) on a limited number (n = 209) of chlorinated and brominated compounds, cholinesterase-inhibiting pesticides, economic poisons, metals, and petroleum hydrocarbons, whereas only 9.3% of the records contain biomarker or bioindicator effects data. Temporal examination of exposure data provides evidence of declining concentrations of certain organochlorine pesticides in some avian species (e.g., ospreys, Pandion haliaetus), and an apparent increase in the detection and possibly the incidence of avian die-offs related to cholinesterase-inhibiting pesticides. To identify spatial data gaps, 11,360 database records with specific sampling locations were combined with the boundaries of coastal watersheds, and National Wildlife Refuge and National Park units. Terrestrial vertebrate ecotoxicological data were lacking in 41.9% of 464 coastal watersheds in the continental United States. Recent (1990-2003) terrestrial vertebrate contaminant exposure or effects data were available for only about half of the National Wildlife Refuge and National Park units in the geographic area encompassed by the database. When these data gaps were overlaid on watersheds exhibiting serious water quality problems and/or high vulnerability to pollution, 72 coastal watersheds, and 76 National Wildlife Refuge and 59 National Park units in the continental United States were found to lack recent terrestrial vertebrate ecotoxicology data. Delineation of data gaps in watersheds of concern can help prioritize monitoring in areas with impaired water quality and emphasize the need for comprehensive monitoring to gain a more complete understanding of coastal ecosystem health. More... »

PAGES

257-265

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00244-004-0193-y

DOI

http://dx.doi.org/10.1007/s00244-004-0193-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051145894

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16075359


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Exposure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Pollutants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vertebrates", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville Laboratory, c/o BARC-East, Building 308, 10300 Baltimore Avenue, 20705, Beltsville, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rattner", 
        "givenName": "B. A.", 
        "id": "sg:person.01363601717.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363601717.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville Laboratory, c/o BARC-East, Building 308, 10300 Baltimore Avenue, 20705, Beltsville, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eisenreich", 
        "givenName": "K. M.", 
        "id": "sg:person.0666031564.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666031564.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Fish and Wildlife Service", 
          "id": "https://www.grid.ac/institutes/grid.462979.7", 
          "name": [
            "Division of Environmental Quality, U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, 22203, Arlington, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golden", 
        "givenName": "N. H.", 
        "id": "sg:person.0576274561.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576274561.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville Laboratory, c/o BARC-East, Building 308, 10300 Baltimore Avenue, 20705, Beltsville, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKernan", 
        "givenName": "M. A.", 
        "id": "sg:person.01203222012.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203222012.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "U.S. Geological Survey, Western Ecological Research Center, 6924 Tremont Road, 95620, Dixon, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hothem", 
        "givenName": "R. L.", 
        "id": "sg:person.01041347023.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041347023.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Geological Survey", 
          "id": "https://www.grid.ac/institutes/grid.2865.9", 
          "name": [
            "U. S. Geological Survey, Patuxent Wildlife Research Center, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, 54603, La Crosse, Wisconsin, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Custer", 
        "givenName": "T. W.", 
        "id": "sg:person.0734740407.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734740407.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1006458811235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000378563", 
          "https://doi.org/10.1023/a:1006458811235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022531600392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002612008", 
          "https://doi.org/10.1023/a:1022531600392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0300-483x(02)00023-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013671910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620170206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026630492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etc.5620170206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026630492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00244-003-3065-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027581562", 
          "https://doi.org/10.1007/s00244-003-3065-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es011055j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031064725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es011055j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031064725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420032451.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040539991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-7283-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046770480", 
          "https://doi.org/10.1007/978-1-4899-7283-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00042937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047584556", 
          "https://doi.org/10.1007/bf00042937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00042937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047584556", 
          "https://doi.org/10.1007/bf00042937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420032505.ch10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049891715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420032741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095906416"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08", 
    "datePublishedReg": "2005-08-01", 
    "description": "The Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database was developed to conduct simple searches for ecotoxicological information, examine exposure trends, and identify significant data gaps. The CEE-TV database contains 16,696 data records on free-ranging amphibians, reptiles, birds, and mammals residing in estuarine and coastal habitats of the Atlantic, Gulf, and Pacific coasts, Alaska, Hawaii, and the Great Lakes. Information in the database was derived from over 1800 source documents, representing 483 unique species (about 252,000 individuals), with sample collection dates spanning from 1884 to 2003. The majority of the records contain exposure data (generally contaminant concentrations) on a limited number (n = 209) of chlorinated and brominated compounds, cholinesterase-inhibiting pesticides, economic poisons, metals, and petroleum hydrocarbons, whereas only 9.3% of the records contain biomarker or bioindicator effects data. Temporal examination of exposure data provides evidence of declining concentrations of certain organochlorine pesticides in some avian species (e.g., ospreys, Pandion haliaetus), and an apparent increase in the detection and possibly the incidence of avian die-offs related to cholinesterase-inhibiting pesticides. To identify spatial data gaps, 11,360 database records with specific sampling locations were combined with the boundaries of coastal watersheds, and National Wildlife Refuge and National Park units. Terrestrial vertebrate ecotoxicological data were lacking in 41.9% of 464 coastal watersheds in the continental United States. Recent (1990-2003) terrestrial vertebrate contaminant exposure or effects data were available for only about half of the National Wildlife Refuge and National Park units in the geographic area encompassed by the database. When these data gaps were overlaid on watersheds exhibiting serious water quality problems and/or high vulnerability to pollution, 72 coastal watersheds, and 76 National Wildlife Refuge and 59 National Park units in the continental United States were found to lack recent terrestrial vertebrate ecotoxicology data. Delineation of data gaps in watersheds of concern can help prioritize monitoring in areas with impaired water quality and emphasize the need for comprehensive monitoring to gain a more complete understanding of coastal ecosystem health.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00244-004-0193-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016396", 
        "issn": [
          "0090-4341", 
          "1432-0703"
        ], 
        "name": "Archives of Environmental Contamination and Toxicology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Retrospective Ecotoxicological Data and Current Information Needs for Terrestrial Vertebrates Residing in Coastal Habitat of the United States", 
    "pagination": "257-265", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3a3b51bc2cccd48cd946251c6ac1681ed75c7a32888d4b974cd1fa9ae761656"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16075359"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0357245"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00244-004-0193-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051145894"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00244-004-0193-y", 
      "https://app.dimensions.ai/details/publication/pub.1051145894"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53022_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00244-004-0193-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00244-004-0193-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00244-004-0193-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00244-004-0193-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00244-004-0193-y'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      48 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00244-004-0193-y schema:about N2969d062cc614561a5c7d72c4b1d1872
2 N45e3f82c35e34ab48d6b8490c8254dde
3 N6fe5eccf49d649faa7077dde944c5d09
4 N76bd14d089b84ff2ac8e9c41c352ca4f
5 N7d17bc67c632417298cd3c1766a181c5
6 N9d98fffcfb654597941428a819617ed5
7 Nad6cc71a9197491eb4569958862e17f7
8 Ncdbad62117644a7d9232633ff29a31b6
9 anzsrc-for:05
10 anzsrc-for:0502
11 schema:author N64080ebfbcdd4c5d8bddacf5938ce345
12 schema:citation sg:pub.10.1007/978-1-4899-7283-5_2
13 sg:pub.10.1007/bf00042937
14 sg:pub.10.1007/s00244-003-3065-y
15 sg:pub.10.1023/a:1006458811235
16 sg:pub.10.1023/a:1022531600392
17 https://doi.org/10.1002/etc.5620170206
18 https://doi.org/10.1016/s0300-483x(02)00023-9
19 https://doi.org/10.1021/es011055j
20 https://doi.org/10.1201/9781420032451.ch3
21 https://doi.org/10.1201/9781420032505.ch10
22 https://doi.org/10.1201/9781420032741
23 schema:datePublished 2005-08
24 schema:datePublishedReg 2005-08-01
25 schema:description The Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database was developed to conduct simple searches for ecotoxicological information, examine exposure trends, and identify significant data gaps. The CEE-TV database contains 16,696 data records on free-ranging amphibians, reptiles, birds, and mammals residing in estuarine and coastal habitats of the Atlantic, Gulf, and Pacific coasts, Alaska, Hawaii, and the Great Lakes. Information in the database was derived from over 1800 source documents, representing 483 unique species (about 252,000 individuals), with sample collection dates spanning from 1884 to 2003. The majority of the records contain exposure data (generally contaminant concentrations) on a limited number (n = 209) of chlorinated and brominated compounds, cholinesterase-inhibiting pesticides, economic poisons, metals, and petroleum hydrocarbons, whereas only 9.3% of the records contain biomarker or bioindicator effects data. Temporal examination of exposure data provides evidence of declining concentrations of certain organochlorine pesticides in some avian species (e.g., ospreys, Pandion haliaetus), and an apparent increase in the detection and possibly the incidence of avian die-offs related to cholinesterase-inhibiting pesticides. To identify spatial data gaps, 11,360 database records with specific sampling locations were combined with the boundaries of coastal watersheds, and National Wildlife Refuge and National Park units. Terrestrial vertebrate ecotoxicological data were lacking in 41.9% of 464 coastal watersheds in the continental United States. Recent (1990-2003) terrestrial vertebrate contaminant exposure or effects data were available for only about half of the National Wildlife Refuge and National Park units in the geographic area encompassed by the database. When these data gaps were overlaid on watersheds exhibiting serious water quality problems and/or high vulnerability to pollution, 72 coastal watersheds, and 76 National Wildlife Refuge and 59 National Park units in the continental United States were found to lack recent terrestrial vertebrate ecotoxicology data. Delineation of data gaps in watersheds of concern can help prioritize monitoring in areas with impaired water quality and emphasize the need for comprehensive monitoring to gain a more complete understanding of coastal ecosystem health.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Naed8b8c9e3e34b69924ca4f2e9a36e7d
30 Necc56fbf304640ba9df43d84a6dd3fc4
31 sg:journal.1016396
32 schema:name Retrospective Ecotoxicological Data and Current Information Needs for Terrestrial Vertebrates Residing in Coastal Habitat of the United States
33 schema:pagination 257-265
34 schema:productId N4043f8e4e9f04122af5eb56bfd627d57
35 N93f8e08824bf47adad3c08f174dd2aa0
36 Na7d41d6389054aa9bf19a20cb743acb8
37 Nc66a6b579a224755a455d53b8e6d96b4
38 Ndd298a9187654844ad48c1d44897cf9b
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051145894
40 https://doi.org/10.1007/s00244-004-0193-y
41 schema:sdDatePublished 2019-04-11T11:24
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N777fb607638a4f8c8f0284e7f7200f64
44 schema:url http://link.springer.com/10.1007%2Fs00244-004-0193-y
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N1497ae5fff1c4dc6a393461930e61e86 rdf:first sg:person.01203222012.60
49 rdf:rest N45fe371d5ac64a699866fe32bd836b13
50 N19acaa34ad304d8d9046396a89a0ef63 rdf:first sg:person.0666031564.26
51 rdf:rest N1bc7f30c0e0c4cc4a01f88bd19324797
52 N1bc7f30c0e0c4cc4a01f88bd19324797 rdf:first sg:person.0576274561.51
53 rdf:rest N1497ae5fff1c4dc6a393461930e61e86
54 N2376fe47dfcd4de6bf01c4d84c1d8cb3 schema:name U.S. Geological Survey, Western Ecological Research Center, 6924 Tremont Road, 95620, Dixon, California, USA
55 rdf:type schema:Organization
56 N2969d062cc614561a5c7d72c4b1d1872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Animals
58 rdf:type schema:DefinedTerm
59 N4043f8e4e9f04122af5eb56bfd627d57 schema:name dimensions_id
60 schema:value pub.1051145894
61 rdf:type schema:PropertyValue
62 N45e3f82c35e34ab48d6b8490c8254dde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Databases, Factual
64 rdf:type schema:DefinedTerm
65 N45fe371d5ac64a699866fe32bd836b13 rdf:first sg:person.01041347023.77
66 rdf:rest N609c5e9847384ddf8727cb897d8d4ffb
67 N609c5e9847384ddf8727cb897d8d4ffb rdf:first sg:person.0734740407.29
68 rdf:rest rdf:nil
69 N64080ebfbcdd4c5d8bddacf5938ce345 rdf:first sg:person.01363601717.78
70 rdf:rest N19acaa34ad304d8d9046396a89a0ef63
71 N6fe5eccf49d649faa7077dde944c5d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Vertebrates
73 rdf:type schema:DefinedTerm
74 N76bd14d089b84ff2ac8e9c41c352ca4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name United States
76 rdf:type schema:DefinedTerm
77 N777fb607638a4f8c8f0284e7f7200f64 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N7d17bc67c632417298cd3c1766a181c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Environmental Exposure
81 rdf:type schema:DefinedTerm
82 N93f8e08824bf47adad3c08f174dd2aa0 schema:name readcube_id
83 schema:value f3a3b51bc2cccd48cd946251c6ac1681ed75c7a32888d4b974cd1fa9ae761656
84 rdf:type schema:PropertyValue
85 N9d98fffcfb654597941428a819617ed5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Environmental Pollutants
87 rdf:type schema:DefinedTerm
88 Na7d41d6389054aa9bf19a20cb743acb8 schema:name nlm_unique_id
89 schema:value 0357245
90 rdf:type schema:PropertyValue
91 Nad6cc71a9197491eb4569958862e17f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Environmental Monitoring
93 rdf:type schema:DefinedTerm
94 Naed8b8c9e3e34b69924ca4f2e9a36e7d schema:issueNumber 2
95 rdf:type schema:PublicationIssue
96 Nc66a6b579a224755a455d53b8e6d96b4 schema:name pubmed_id
97 schema:value 16075359
98 rdf:type schema:PropertyValue
99 Ncdbad62117644a7d9232633ff29a31b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Ecosystem
101 rdf:type schema:DefinedTerm
102 Ndd298a9187654844ad48c1d44897cf9b schema:name doi
103 schema:value 10.1007/s00244-004-0193-y
104 rdf:type schema:PropertyValue
105 Necc56fbf304640ba9df43d84a6dd3fc4 schema:volumeNumber 49
106 rdf:type schema:PublicationVolume
107 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
108 schema:name Environmental Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
111 schema:name Environmental Science and Management
112 rdf:type schema:DefinedTerm
113 sg:journal.1016396 schema:issn 0090-4341
114 1432-0703
115 schema:name Archives of Environmental Contamination and Toxicology
116 rdf:type schema:Periodical
117 sg:person.01041347023.77 schema:affiliation N2376fe47dfcd4de6bf01c4d84c1d8cb3
118 schema:familyName Hothem
119 schema:givenName R. L.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041347023.77
121 rdf:type schema:Person
122 sg:person.01203222012.60 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
123 schema:familyName McKernan
124 schema:givenName M. A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203222012.60
126 rdf:type schema:Person
127 sg:person.01363601717.78 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
128 schema:familyName Rattner
129 schema:givenName B. A.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363601717.78
131 rdf:type schema:Person
132 sg:person.0576274561.51 schema:affiliation https://www.grid.ac/institutes/grid.462979.7
133 schema:familyName Golden
134 schema:givenName N. H.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576274561.51
136 rdf:type schema:Person
137 sg:person.0666031564.26 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
138 schema:familyName Eisenreich
139 schema:givenName K. M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666031564.26
141 rdf:type schema:Person
142 sg:person.0734740407.29 schema:affiliation https://www.grid.ac/institutes/grid.2865.9
143 schema:familyName Custer
144 schema:givenName T. W.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734740407.29
146 rdf:type schema:Person
147 sg:pub.10.1007/978-1-4899-7283-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046770480
148 https://doi.org/10.1007/978-1-4899-7283-5_2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00042937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047584556
151 https://doi.org/10.1007/bf00042937
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00244-003-3065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027581562
154 https://doi.org/10.1007/s00244-003-3065-y
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/a:1006458811235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000378563
157 https://doi.org/10.1023/a:1006458811235
158 rdf:type schema:CreativeWork
159 sg:pub.10.1023/a:1022531600392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002612008
160 https://doi.org/10.1023/a:1022531600392
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/etc.5620170206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026630492
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0300-483x(02)00023-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013671910
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/es011055j schema:sameAs https://app.dimensions.ai/details/publication/pub.1031064725
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1201/9781420032451.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040539991
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1201/9781420032505.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049891715
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1201/9781420032741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095906416
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.2865.9 schema:alternateName United States Geological Survey
175 schema:name U. S. Geological Survey, Patuxent Wildlife Research Center, Beltsville Laboratory, c/o BARC-East, Building 308, 10300 Baltimore Avenue, 20705, Beltsville, Maryland, USA
176 U. S. Geological Survey, Patuxent Wildlife Research Center, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, 54603, La Crosse, Wisconsin, USA
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.462979.7 schema:alternateName United States Fish and Wildlife Service
179 schema:name Division of Environmental Quality, U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, 22203, Arlington, Virginia, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...