The Ammonium Channel NOD26 is the Evolutionary Innovation that Drives the Emergence, Consolidation, and Dissemination of Nitrogen-Fixing Symbiosis in Angiosperms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Romina Frare, Nicolás Ayub, Karina Alleva, Gabriela Soto

ABSTRACT

Increasing evidence indicates that N-fixing symbiosis has evolved several times in the N-fixing clade of angiosperms and that this evolution is driven by a single evolutionary innovation. However, the genetics of this ancestral predisposition to N-fixing symbiosis remains unclear. A natural candidate for such molecular innovation is the ammonium channel NOD26, the main protein component of the symbiosome membrane, which facilitates the plant uptake of the nitrogen fixed by symbiotic bacteria. Here, in concordance with the emergence of N-fixing symbiosis in angiosperms but not in ancestral plants, phylogenetic analysis showed that NOD26 belongs to an angiosperm-exclusive subgroup of aquaporins. Integrated genomic, phylogenetic, and gene expression analyses supported NOD26 occurrence in the N-fixing clade, the increase in the NOD26 copy number by block and tandem duplications in legumes, and the low-copy number or even the loss of NOD26 in non-legume species of the N-fixing clade, which correlated with the possibility to lose N-fixing symbiosis in legume and non-legume lineages. Metabolic reconstructions showed that retention of NOD26 in N-fixing precursor could represent an adaptive mechanism to bypass energy crisis during anaerobic stress by ammonium detoxification. Finally, we discuss the potential use of NOD26 to transfer N-fixation to non-N-fixing crops as cereals. More... »

PAGES

554-565

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00239-018-9867-3

DOI

http://dx.doi.org/10.1007/s00239-018-9867-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107121603

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30238312


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Instituto de Gen\u00e9tica Ewald A. Favret (IGEAF), De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina", 
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas (CONICET), Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frare", 
        "givenName": "Romina", 
        "id": "sg:person.01174143331.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174143331.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Instituto de Gen\u00e9tica Ewald A. Favret (IGEAF), De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina", 
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas (CONICET), Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayub", 
        "givenName": "Nicol\u00e1s", 
        "id": "sg:person.0674304612.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674304612.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Qu\u00edmica y Fisicoqu\u00edmica Biol\u00f3gicas", 
          "id": "https://www.grid.ac/institutes/grid.473315.7", 
          "name": [
            "Instituto de Gen\u00e9tica Ewald A. Favret (IGEAF), De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina", 
            "Instituto de Qu\u00edmica y Fisicoqu\u00edmica Biol\u00f3gica (IQUIFIB), Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alleva", 
        "givenName": "Karina", 
        "id": "sg:person.01166145525.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166145525.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Instituto de Gen\u00e9tica Ewald A. Favret (IGEAF), De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina", 
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas (CONICET), Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soto", 
        "givenName": "Gabriela", 
        "id": "sg:person.01072611545.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072611545.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1104/pp.109.148379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000131942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mci207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001108315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2010.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001879386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erh258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004668660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2016.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005296759", 
          "https://doi.org/10.1038/ismej.2016.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0800036105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008123744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1600260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009231269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009406861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamem.2011.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011704502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.15.00776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012072521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0064515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013787631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbagen.2013.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014788542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015415422", 
          "https://doi.org/10.1186/1471-2164-10-45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.7.2647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016976930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00251-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017082761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017534919", 
          "https://doi.org/10.1038/nature08670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017534919", 
          "https://doi.org/10.1038/nature08670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tpj.12119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023016842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028598747", 
          "https://doi.org/10.1186/1471-2105-4-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-4-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028598747", 
          "https://doi.org/10.1186/1471-2105-4-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plantsci.2016.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030365960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00232-013-9618-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032693170", 
          "https://doi.org/10.1007/s00232-013-9618-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m700982200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/09687688.2014.960493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034003278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034564492", 
          "https://doi.org/10.1186/1471-2164-15-866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035880448", 
          "https://doi.org/10.1038/nrmicro1705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036060207", 
          "https://doi.org/10.1038/ncomms5087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pce.12312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036742815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037623568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0115055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038874453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2016.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040575585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/15.2.813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041315497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evt027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041725869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043201599", 
          "https://doi.org/10.1038/nature07891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1613358113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045484175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03519.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048183131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590947131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150590947131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/342455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058639387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-05-11-0114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060077590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1721395115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103753516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aat1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104168814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aat1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104168814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Increasing evidence indicates that N-fixing symbiosis has evolved several times in the N-fixing clade of angiosperms and that this evolution is driven by a single evolutionary innovation. However, the genetics of this ancestral predisposition to N-fixing symbiosis remains unclear. A natural candidate for such molecular innovation is the ammonium channel NOD26, the main protein component of the symbiosome membrane, which facilitates the plant uptake of the nitrogen fixed by symbiotic bacteria. Here, in concordance with the emergence of N-fixing symbiosis in angiosperms but not in ancestral plants, phylogenetic analysis showed that NOD26 belongs to an angiosperm-exclusive subgroup of aquaporins. Integrated genomic, phylogenetic, and gene expression analyses supported NOD26 occurrence in the N-fixing clade, the increase in the NOD26 copy number by block and tandem duplications in legumes, and the low-copy number or even the loss of NOD26 in non-legume species of the N-fixing clade, which correlated with the possibility to lose N-fixing symbiosis in legume and non-legume lineages. Metabolic reconstructions showed that retention of NOD26 in N-fixing precursor could represent an adaptive mechanism to bypass energy crisis during anaerobic stress by ammonium detoxification. Finally, we discuss the potential use of NOD26 to transfer N-fixation to non-N-fixing crops as cereals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00239-018-9867-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "The Ammonium Channel NOD26 is the Evolutionary Innovation that Drives the Emergence, Consolidation, and Dissemination of Nitrogen-Fixing Symbiosis in Angiosperms", 
    "pagination": "554-565", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5df887ad377b1de85ca3b2b2d94b99690844974b39674885840ca7cf90089d30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30238312"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00239-018-9867-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107121603"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00239-018-9867-3", 
      "https://app.dimensions.ai/details/publication/pub.1107121603"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000565.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00239-018-9867-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9867-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9867-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9867-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9867-3'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00239-018-9867-3 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N29a8f744f9854d39a0f65dc4926f0df1
4 schema:citation sg:pub.10.1007/s00232-013-9618-8
5 sg:pub.10.1038/ismej.2016.67
6 sg:pub.10.1038/nature07891
7 sg:pub.10.1038/nature08670
8 sg:pub.10.1038/ncomms5087
9 sg:pub.10.1038/nrmicro1705
10 sg:pub.10.1186/1471-2105-4-29
11 sg:pub.10.1186/1471-2164-10-45
12 sg:pub.10.1186/1471-2164-15-866
13 https://doi.org/10.1016/j.bbagen.2013.12.001
14 https://doi.org/10.1016/j.bbamem.2011.09.014
15 https://doi.org/10.1016/j.cub.2005.01.042
16 https://doi.org/10.1016/j.febslet.2010.09.033
17 https://doi.org/10.1016/j.plantsci.2016.04.008
18 https://doi.org/10.1016/j.tplants.2016.01.012
19 https://doi.org/10.1073/pnas.0800036105
20 https://doi.org/10.1073/pnas.1613358113
21 https://doi.org/10.1073/pnas.1721395115
22 https://doi.org/10.1073/pnas.92.7.2647
23 https://doi.org/10.1074/jbc.m700982200
24 https://doi.org/10.1080/10635150590947131
25 https://doi.org/10.1086/342455
26 https://doi.org/10.1093/aob/mci207
27 https://doi.org/10.1093/bioinformatics/bts199
28 https://doi.org/10.1093/gbe/evt027
29 https://doi.org/10.1093/jxb/erh258
30 https://doi.org/10.1093/nar/15.2.813
31 https://doi.org/10.1094/mpmi-05-11-0114
32 https://doi.org/10.1104/pp.109.148379
33 https://doi.org/10.1105/tpc.15.00776
34 https://doi.org/10.1111/j.1365-313x.2008.03519.x
35 https://doi.org/10.1111/pce.12312
36 https://doi.org/10.1111/tpj.12119
37 https://doi.org/10.1126/science.aat1743
38 https://doi.org/10.1128/jb.00251-06
39 https://doi.org/10.1371/journal.pone.0064515
40 https://doi.org/10.1371/journal.pone.0115055
41 https://doi.org/10.3109/09687688.2014.960493
42 https://doi.org/10.3732/ajb.1600260
43 schema:datePublished 2018-10
44 schema:datePublishedReg 2018-10-01
45 schema:description Increasing evidence indicates that N-fixing symbiosis has evolved several times in the N-fixing clade of angiosperms and that this evolution is driven by a single evolutionary innovation. However, the genetics of this ancestral predisposition to N-fixing symbiosis remains unclear. A natural candidate for such molecular innovation is the ammonium channel NOD26, the main protein component of the symbiosome membrane, which facilitates the plant uptake of the nitrogen fixed by symbiotic bacteria. Here, in concordance with the emergence of N-fixing symbiosis in angiosperms but not in ancestral plants, phylogenetic analysis showed that NOD26 belongs to an angiosperm-exclusive subgroup of aquaporins. Integrated genomic, phylogenetic, and gene expression analyses supported NOD26 occurrence in the N-fixing clade, the increase in the NOD26 copy number by block and tandem duplications in legumes, and the low-copy number or even the loss of NOD26 in non-legume species of the N-fixing clade, which correlated with the possibility to lose N-fixing symbiosis in legume and non-legume lineages. Metabolic reconstructions showed that retention of NOD26 in N-fixing precursor could represent an adaptive mechanism to bypass energy crisis during anaerobic stress by ammonium detoxification. Finally, we discuss the potential use of NOD26 to transfer N-fixation to non-N-fixing crops as cereals.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N1a87d7a45ac8459db37fdf7703dd6e3f
50 N57033f37a49e4a338f82992851349e97
51 sg:journal.1016442
52 schema:name The Ammonium Channel NOD26 is the Evolutionary Innovation that Drives the Emergence, Consolidation, and Dissemination of Nitrogen-Fixing Symbiosis in Angiosperms
53 schema:pagination 554-565
54 schema:productId N47516482356d4ecca3bc9333927310c5
55 N8cfa73516886430a81f60e7b285d1158
56 N8ffe8028ff5c43ae9735a6ea7d55cad0
57 Na04d78f769bf4dba89af7cc9aead47b0
58 Nc758cfbc9e0a455ea6daaaf3c1990a26
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107121603
60 https://doi.org/10.1007/s00239-018-9867-3
61 schema:sdDatePublished 2019-04-11T00:25
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nfc22b10ffd954a21b96caf323634cd0a
64 schema:url https://link.springer.com/10.1007%2Fs00239-018-9867-3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N1a87d7a45ac8459db37fdf7703dd6e3f schema:issueNumber 8
69 rdf:type schema:PublicationIssue
70 N29a8f744f9854d39a0f65dc4926f0df1 rdf:first sg:person.01174143331.92
71 rdf:rest Nc1afc2f48615489e9a2ef448b63bf7d1
72 N47516482356d4ecca3bc9333927310c5 schema:name pubmed_id
73 schema:value 30238312
74 rdf:type schema:PropertyValue
75 N57033f37a49e4a338f82992851349e97 schema:volumeNumber 86
76 rdf:type schema:PublicationVolume
77 N8cfa73516886430a81f60e7b285d1158 schema:name dimensions_id
78 schema:value pub.1107121603
79 rdf:type schema:PropertyValue
80 N8ffe8028ff5c43ae9735a6ea7d55cad0 schema:name doi
81 schema:value 10.1007/s00239-018-9867-3
82 rdf:type schema:PropertyValue
83 Na04d78f769bf4dba89af7cc9aead47b0 schema:name nlm_unique_id
84 schema:value 0360051
85 rdf:type schema:PropertyValue
86 Na72248da12f74309a3ce91f29be4a758 rdf:first sg:person.01072611545.03
87 rdf:rest rdf:nil
88 Nc1afc2f48615489e9a2ef448b63bf7d1 rdf:first sg:person.0674304612.93
89 rdf:rest Nf3d957582da343ea8f0cb57bdf45e4e1
90 Nc758cfbc9e0a455ea6daaaf3c1990a26 schema:name readcube_id
91 schema:value 5df887ad377b1de85ca3b2b2d94b99690844974b39674885840ca7cf90089d30
92 rdf:type schema:PropertyValue
93 Nf3d957582da343ea8f0cb57bdf45e4e1 rdf:first sg:person.01166145525.96
94 rdf:rest Na72248da12f74309a3ce91f29be4a758
95 Nfc22b10ffd954a21b96caf323634cd0a schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biological Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
101 schema:name Genetics
102 rdf:type schema:DefinedTerm
103 sg:journal.1016442 schema:issn 0022-2844
104 1432-1432
105 schema:name Journal of Molecular Evolution
106 rdf:type schema:Periodical
107 sg:person.01072611545.03 schema:affiliation https://www.grid.ac/institutes/grid.423606.5
108 schema:familyName Soto
109 schema:givenName Gabriela
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072611545.03
111 rdf:type schema:Person
112 sg:person.01166145525.96 schema:affiliation https://www.grid.ac/institutes/grid.473315.7
113 schema:familyName Alleva
114 schema:givenName Karina
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166145525.96
116 rdf:type schema:Person
117 sg:person.01174143331.92 schema:affiliation https://www.grid.ac/institutes/grid.423606.5
118 schema:familyName Frare
119 schema:givenName Romina
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174143331.92
121 rdf:type schema:Person
122 sg:person.0674304612.93 schema:affiliation https://www.grid.ac/institutes/grid.423606.5
123 schema:familyName Ayub
124 schema:givenName Nicolás
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674304612.93
126 rdf:type schema:Person
127 sg:pub.10.1007/s00232-013-9618-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032693170
128 https://doi.org/10.1007/s00232-013-9618-8
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ismej.2016.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005296759
131 https://doi.org/10.1038/ismej.2016.67
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature07891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043201599
134 https://doi.org/10.1038/nature07891
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature08670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017534919
137 https://doi.org/10.1038/nature08670
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ncomms5087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060207
140 https://doi.org/10.1038/ncomms5087
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nrmicro1705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035880448
143 https://doi.org/10.1038/nrmicro1705
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1471-2105-4-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028598747
146 https://doi.org/10.1186/1471-2105-4-29
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1471-2164-10-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415422
149 https://doi.org/10.1186/1471-2164-10-45
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1471-2164-15-866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034564492
152 https://doi.org/10.1186/1471-2164-15-866
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.bbagen.2013.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014788542
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.bbamem.2011.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011704502
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cub.2005.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009406861
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.febslet.2010.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001879386
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.plantsci.2016.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030365960
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.tplants.2016.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040575585
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.0800036105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008123744
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.1613358113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045484175
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.1721395115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103753516
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1073/pnas.92.7.2647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016976930
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1074/jbc.m700982200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174374
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1080/10635150590947131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369583
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1086/342455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058639387
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/aob/mci207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001108315
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/bts199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037623568
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/gbe/evt027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041725869
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/jxb/erh258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004668660
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/nar/15.2.813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041315497
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1094/mpmi-05-11-0114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060077590
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1104/pp.109.148379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000131942
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1105/tpc.15.00776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012072521
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1365-313x.2008.03519.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048183131
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/pce.12312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036742815
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/tpj.12119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023016842
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.aat1743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104168814
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1128/jb.00251-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017082761
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1371/journal.pone.0064515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013787631
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1371/journal.pone.0115055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038874453
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3109/09687688.2014.960493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034003278
211 rdf:type schema:CreativeWork
212 https://doi.org/10.3732/ajb.1600260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009231269
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.423606.5 schema:alternateName National Scientific and Technical Research Council
215 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
216 Instituto de Genética Ewald A. Favret (IGEAF), De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.473315.7 schema:alternateName Instituto de Química y Fisicoquímica Biológicas
219 schema:name Instituto de Genética Ewald A. Favret (IGEAF), De los Reseros S/N, Castelar C25(1712), Buenos Aires, Argentina
220 Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...