Chiral Monomers Ensure Orientational Specificity of Monomer Binding During Polymer Self-Replication View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Hemachander Subramanian, Robert A. Gatenby

ABSTRACT

Biomolecular homochirality is universally observed in living systems but the molecular and evolutionary dynamics that led to its emergence are unknown. In fact, there are significant disadvantages in using chiral monomers for polymerization, which include enantiomeric cross-inhibition in racemic medium and under-utilization of available resources for self-replication in the primordial environment. Nevertheless, most investigations of homochirality in living systems assume that the individual primordial monomers were chiral prior to the formation of self-replicating polymer and therefore focus on identifying a symmetry-breaking mechanism that might choose one enantiomer over the other in a racemic medium. Within the premise that the extant biomolecules are products of molecular evolution, we ask a related but distinct question: why is an achiral monomer molecule disfavored? Here we identify an evolutionary advantage for molecular evolution to choose chiral over achiral monomers to construct primordial self-replicating polymers. We argue that when polymerization is constrained to proceed in only one direction along the template, as in DNA, evolution favors chiral monomers and homochiral polymers. This evolutionary advantage stems from the ability of a chiral monomer to bond with the template in only one orientation relative to the template monomer, along the direction of polymerization. An achiral monomer, on the other hand, offers more than one possible orientation for bonding with the template monomer, due to the presence of symmetry elements in its structure, which would lead to inhibition of polymerization. We show that the requirement of orientational specificity leads to monomer chirality, by using a known relationship between rotational and reflection symmetry elements, within the constraint that the resultant polymers are helical. More... »

PAGES

255-263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00239-018-9845-9

DOI

http://dx.doi.org/10.1007/s00239-018-9845-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103783504

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29725703


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramanian", 
        "givenName": "Hemachander", 
        "id": "sg:person.01204207657.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204207657.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Integrated Mathematical Oncology Department and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gatenby", 
        "givenName": "Robert A.", 
        "id": "sg:person.01251663701.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/38460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334495", 
          "https://doi.org/10.1038/38460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002334495", 
          "https://doi.org/10.1038/38460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chembiol.2013.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004040156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.13.4398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004096280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.20602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007978654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10409230490460765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014081348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382525a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015429447", 
          "https://doi.org/10.1038/382525a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a002196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018050967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/310602a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019734810", 
          "https://doi.org/10.1038/310602a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201300795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020977552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00000777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021083298", 
          "https://doi.org/10.1007/pl00000777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(86)80036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022663080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/378767a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023946847", 
          "https://doi.org/10.1038/378767a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.199619391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024600713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0303-2647(87)90016-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031527288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0303-2647(87)90016-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031527288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307578101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033250273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033632917", 
          "https://doi.org/10.1038/35057238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033632917", 
          "https://doi.org/10.1038/35057238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046895906", 
          "https://doi.org/10.1038/37569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/37569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046895906", 
          "https://doi.org/10.1038/37569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00450633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049289362", 
          "https://doi.org/10.1007/bf00450633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00450633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049289362", 
          "https://doi.org/10.1007/bf00450633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2034746100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053564001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.macromol.5b00811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055118512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00046a057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055701907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja021233o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055826752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja021233o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055826752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049548m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049548m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja963563c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055866230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja963563c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055866230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1470913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062484879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1962210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062515385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2018.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101506419"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Biomolecular homochirality is universally observed in living systems but the molecular and evolutionary dynamics that led to its emergence are unknown. In fact, there are significant disadvantages in using chiral monomers for polymerization, which include enantiomeric cross-inhibition in racemic medium and under-utilization of available resources for self-replication in the primordial environment. Nevertheless, most investigations of homochirality in living systems assume that the individual primordial monomers were chiral prior to the formation of self-replicating polymer and therefore focus on identifying a symmetry-breaking mechanism that might choose one enantiomer over the other in a racemic medium. Within the premise that the extant biomolecules are products of molecular evolution, we ask a related but distinct question: why is an achiral monomer molecule disfavored? Here we identify an evolutionary advantage for molecular evolution to choose chiral over achiral monomers to construct primordial self-replicating polymers. We argue that when polymerization is constrained to proceed in only one direction along the template, as in DNA, evolution favors chiral monomers and homochiral polymers. This evolutionary advantage stems from the ability of a chiral monomer to bond with the template in only one orientation relative to the template monomer, along the direction of polymerization. An achiral monomer, on the other hand, offers more than one possible orientation for bonding with the template monomer, due to the presence of symmetry elements in its structure, which would lead to inhibition of polymerization. We show that the requirement of orientational specificity leads to monomer chirality, by using a known relationship between rotational and reflection symmetry elements, within the constraint that the resultant polymers are helical.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00239-018-9845-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4455018", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1016442", 
        "issn": [
          "0022-2844", 
          "1432-1432"
        ], 
        "name": "Journal of Molecular Evolution", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Chiral Monomers Ensure Orientational Specificity of Monomer Binding During Polymer Self-Replication", 
    "pagination": "255-263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e5beb05ce2935b90d8347cfae4830f467c4e65e3323a1bf5acd192a7173e4ca"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29725703"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0360051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00239-018-9845-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103783504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00239-018-9845-9", 
      "https://app.dimensions.ai/details/publication/pub.1103783504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00239-018-9845-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9845-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9845-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9845-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00239-018-9845-9'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00239-018-9845-9 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N150d703a1f574ac5a96ba9ed1c3d090f
4 schema:citation sg:pub.10.1007/bf00450633
5 sg:pub.10.1007/pl00000777
6 sg:pub.10.1038/310602a0
7 sg:pub.10.1038/35057238
8 sg:pub.10.1038/37569
9 sg:pub.10.1038/378767a0
10 sg:pub.10.1038/382525a0
11 sg:pub.10.1038/38460
12 https://doi.org/10.1002/anie.199619391
13 https://doi.org/10.1002/anie.201300795
14 https://doi.org/10.1002/bies.20602
15 https://doi.org/10.1016/0014-5793(86)80036-9
16 https://doi.org/10.1016/0303-2647(87)90016-5
17 https://doi.org/10.1016/j.chembiol.2013.03.012
18 https://doi.org/10.1016/j.jtbi.2018.03.012
19 https://doi.org/10.1021/acs.macromol.5b00811
20 https://doi.org/10.1021/ja00046a057
21 https://doi.org/10.1021/ja021233o
22 https://doi.org/10.1021/ja049548m
23 https://doi.org/10.1021/ja963563c
24 https://doi.org/10.1073/pnas.0307578101
25 https://doi.org/10.1073/pnas.2034746100
26 https://doi.org/10.1073/pnas.84.13.4398
27 https://doi.org/10.1080/10409230490460765
28 https://doi.org/10.1101/cshperspect.a002196
29 https://doi.org/10.1126/science.1470913
30 https://doi.org/10.1126/science.1962210
31 schema:datePublished 2018-06
32 schema:datePublishedReg 2018-06-01
33 schema:description Biomolecular homochirality is universally observed in living systems but the molecular and evolutionary dynamics that led to its emergence are unknown. In fact, there are significant disadvantages in using chiral monomers for polymerization, which include enantiomeric cross-inhibition in racemic medium and under-utilization of available resources for self-replication in the primordial environment. Nevertheless, most investigations of homochirality in living systems assume that the individual primordial monomers were chiral prior to the formation of self-replicating polymer and therefore focus on identifying a symmetry-breaking mechanism that might choose one enantiomer over the other in a racemic medium. Within the premise that the extant biomolecules are products of molecular evolution, we ask a related but distinct question: why is an achiral monomer molecule disfavored? Here we identify an evolutionary advantage for molecular evolution to choose chiral over achiral monomers to construct primordial self-replicating polymers. We argue that when polymerization is constrained to proceed in only one direction along the template, as in DNA, evolution favors chiral monomers and homochiral polymers. This evolutionary advantage stems from the ability of a chiral monomer to bond with the template in only one orientation relative to the template monomer, along the direction of polymerization. An achiral monomer, on the other hand, offers more than one possible orientation for bonding with the template monomer, due to the presence of symmetry elements in its structure, which would lead to inhibition of polymerization. We show that the requirement of orientational specificity leads to monomer chirality, by using a known relationship between rotational and reflection symmetry elements, within the constraint that the resultant polymers are helical.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N503d149f4e894199b3904f81e0b239b3
38 Nd9ef885f645f40dba84b224a5300dd18
39 sg:journal.1016442
40 schema:name Chiral Monomers Ensure Orientational Specificity of Monomer Binding During Polymer Self-Replication
41 schema:pagination 255-263
42 schema:productId N0fbd13ca591e4935a90f3a6e675bf224
43 N6cf08f7f4d3f4944890cef67e144def3
44 N8911f6482cf04ce7abbab05c41933b62
45 N8c77dd757a9e4f5382b47b11c5d6a104
46 Nfd10e640f74b45fb8cec8ba61838711b
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103783504
48 https://doi.org/10.1007/s00239-018-9845-9
49 schema:sdDatePublished 2019-04-10T13:21
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Naa71de21f91e4dbc9b5ee4f50e7ea200
52 schema:url http://link.springer.com/10.1007%2Fs00239-018-9845-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0fbd13ca591e4935a90f3a6e675bf224 schema:name dimensions_id
57 schema:value pub.1103783504
58 rdf:type schema:PropertyValue
59 N150d703a1f574ac5a96ba9ed1c3d090f rdf:first sg:person.01204207657.12
60 rdf:rest N16d7754279ad4bcab38f0ca8ebe3038e
61 N16d7754279ad4bcab38f0ca8ebe3038e rdf:first sg:person.01251663701.28
62 rdf:rest rdf:nil
63 N503d149f4e894199b3904f81e0b239b3 schema:issueNumber 5
64 rdf:type schema:PublicationIssue
65 N6cf08f7f4d3f4944890cef67e144def3 schema:name pubmed_id
66 schema:value 29725703
67 rdf:type schema:PropertyValue
68 N8911f6482cf04ce7abbab05c41933b62 schema:name doi
69 schema:value 10.1007/s00239-018-9845-9
70 rdf:type schema:PropertyValue
71 N8c77dd757a9e4f5382b47b11c5d6a104 schema:name readcube_id
72 schema:value 3e5beb05ce2935b90d8347cfae4830f467c4e65e3323a1bf5acd192a7173e4ca
73 rdf:type schema:PropertyValue
74 Naa71de21f91e4dbc9b5ee4f50e7ea200 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nd9ef885f645f40dba84b224a5300dd18 schema:volumeNumber 86
77 rdf:type schema:PublicationVolume
78 Nfd10e640f74b45fb8cec8ba61838711b schema:name nlm_unique_id
79 schema:value 0360051
80 rdf:type schema:PropertyValue
81 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
82 schema:name Chemical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
85 schema:name Macromolecular and Materials Chemistry
86 rdf:type schema:DefinedTerm
87 sg:grant.4455018 http://pending.schema.org/fundedItem sg:pub.10.1007/s00239-018-9845-9
88 rdf:type schema:MonetaryGrant
89 sg:journal.1016442 schema:issn 0022-2844
90 1432-1432
91 schema:name Journal of Molecular Evolution
92 rdf:type schema:Periodical
93 sg:person.01204207657.12 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
94 schema:familyName Subramanian
95 schema:givenName Hemachander
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204207657.12
97 rdf:type schema:Person
98 sg:person.01251663701.28 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
99 schema:familyName Gatenby
100 schema:givenName Robert A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00450633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049289362
104 https://doi.org/10.1007/bf00450633
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/pl00000777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021083298
107 https://doi.org/10.1007/pl00000777
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/310602a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019734810
110 https://doi.org/10.1038/310602a0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/35057238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632917
113 https://doi.org/10.1038/35057238
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/37569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046895906
116 https://doi.org/10.1038/37569
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/378767a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023946847
119 https://doi.org/10.1038/378767a0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/382525a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015429447
122 https://doi.org/10.1038/382525a0
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/38460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002334495
125 https://doi.org/10.1038/38460
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/anie.199619391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024600713
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/anie.201300795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020977552
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/bies.20602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978654
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0014-5793(86)80036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022663080
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0303-2647(87)90016-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031527288
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.chembiol.2013.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004040156
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jtbi.2018.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101506419
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/acs.macromol.5b00811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055118512
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/ja00046a057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701907
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/ja021233o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055826752
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/ja049548m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838125
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/ja963563c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055866230
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1073/pnas.0307578101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033250273
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1073/pnas.2034746100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053564001
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.84.13.4398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004096280
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/10409230490460765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014081348
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1101/cshperspect.a002196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018050967
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.1470913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062484879
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.1962210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062515385
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.468198.a schema:alternateName Moffitt Cancer Center
166 schema:name Integrated Mathematical Oncology Department and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
167 Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...