Mitochondrial Genetic Codes Evolve to Match Amino Acid Requirements of Proteins View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

Jonathan Swire, Olivia P. Judson, Austin Burt

ABSTRACT

Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular—and contrary to the predictions of the mutation-drift hypothesis—the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins. More... »

PAGES

128-139

References to SciGraph publications

  • 1997-05. The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression in CURRENT GENETICS
  • 1997-08. Use of a deviant mitochondrial genetic code in yellow-green algae as a landmark for segregating members within the phylum in JOURNAL OF MOLECULAR EVOLUTION
  • 1997-10. A deviant mitochondrial genetic code in prymnesiophytes (yellow-algae): UGA codon for tryptophan in CURRENT GENETICS
  • 1979-03. Two types of amino acid substitutions in protein evolution in JOURNAL OF MOLECULAR EVOLUTION
  • 1998-10. Directionally Evolving Genetic Code: The UGA Codon from Stop to Tryptophan in Mitochondria in JOURNAL OF MOLECULAR EVOLUTION
  • 1998. Deleterious mutation accumulation in organelle genomes in GENETICA
  • 1993-01. Codons AGA and AGG are read as glycine in ascidian mitochondria in JOURNAL OF MOLECULAR EVOLUTION
  • 1998-03. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA in GENETICA
  • 2001-10. On the Evolution of Redundancy in Genetic Codes in JOURNAL OF MOLECULAR EVOLUTION
  • 2002-05. The Impact of Message Mutation on the Fitness of a Genetic Code in JOURNAL OF MOLECULAR EVOLUTION
  • 1998-12. Problems with Parsimony in Sequences of Biased Base Composition in JOURNAL OF MOLECULAR EVOLUTION
  • 1981-04. Sequence and organization of the human mitochondrial genome in NATURE
  • 1999-11. The Genetic Code: What Is It Good For? An Analysis of the Effects of Selection Pressures on Genetic Codes in JOURNAL OF MOLECULAR EVOLUTION
  • 1997-05. Evidence for a clade of nematodes, arthropods and other moulting animals in NATURE
  • 1979-11. A different genetic code in human mitochondria in NATURE
  • 1989-09. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea in NATURE
  • 1996-05. On malleability in the genetic code in JOURNAL OF MOLECULAR EVOLUTION
  • 1998-09. The Genetic Code Is One in a Million in JOURNAL OF MOLECULAR EVOLUTION
  • 1994-08. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes in JOURNAL OF MOLECULAR EVOLUTION
  • 1998. Deleterious mutations in animal mitochondrial DNA in GENETICA
  • 1996-06. UAG is a sense codon in several chlorophycean mitochondria in CURRENT GENETICS
  • 1997-05. The mitochondrion that time forgot in NATURE
  • 1998-11. The genome sequence of Rickettsia prowazekii and the origin of mitochondria in NATURE
  • 1992-04. Planarian mitochondria II. The unique genetic code as deduced from cytochrome c oxidase subunit I gene sequences in JOURNAL OF MOLECULAR EVOLUTION
  • 2001-01. Rewiring the keyboard: evolvability of the genetic code in NATURE REVIEWS GENETICS
  • 2001-10. How Mitochondria Redefine the Code in JOURNAL OF MOLECULAR EVOLUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00239-004-0077-9

    DOI

    http://dx.doi.org/10.1007/s00239-004-0077-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038431459

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15696375


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Codon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Mitochondrial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitochondrial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Selection, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre for Bioinformatics, Biochemistry Building, Department of Biological Sciences, Imperial College, SW7 2AY, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Centre for Bioinformatics, Biochemistry Building, Department of Biological Sciences, Imperial College, SW7 2AY, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Swire", 
            "givenName": "Jonathan", 
            "id": "sg:person.0753552450.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753552450.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Imperial College at Silwood Park, SL5 7PY, Ascot, Berks, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Biology, Imperial College at Silwood Park, SL5 7PY, Ascot, Berks, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Judson", 
            "givenName": "Olivia P.", 
            "id": "sg:person.0743477444.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743477444.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Imperial College at Silwood Park, SL5 7PY, Ascot, Berks, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Biology, Imperial College at Silwood Park, SL5 7PY, Ascot, Berks, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burt", 
            "givenName": "Austin", 
            "id": "sg:person.01142167260.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01732340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010544282", 
              "https://doi.org/10.1007/bf01732340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-001-0060-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014072284", 
              "https://doi.org/10.1007/s00239-001-0060-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002982129", 
              "https://doi.org/10.1007/s002390010220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016537729", 
              "https://doi.org/10.1007/pl00006427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002940050096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011283731", 
              "https://doi.org/10.1007/s002940050096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00163805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082571060", 
              "https://doi.org/10.1007/bf00163805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002940050220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005741128", 
              "https://doi.org/10.1007/s002940050220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/387489a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014476080", 
              "https://doi.org/10.1038/387489a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035465224", 
              "https://doi.org/10.1007/s002390010217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014822805", 
              "https://doi.org/10.1007/pl00006575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/341164a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045261486", 
              "https://doi.org/10.1038/341164a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/282189a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012580589", 
              "https://doi.org/10.1038/282189a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017022522486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026330430", 
              "https://doi.org/10.1023/a:1017022522486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019442219", 
              "https://doi.org/10.1007/pl00006381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017030708374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013279089", 
              "https://doi.org/10.1023/a:1017030708374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/24094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045605598", 
              "https://doi.org/10.1038/24094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030573539", 
              "https://doi.org/10.1007/pl00006210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00160240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032989643", 
              "https://doi.org/10.1007/bf00160240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35047500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045696245", 
              "https://doi.org/10.1038/35047500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02352290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022107533", 
              "https://doi.org/10.1007/bf02352290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02407301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014779164", 
              "https://doi.org/10.1007/bf02407301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/290457a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038487698", 
              "https://doi.org/10.1038/290457a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/387454a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022586566", 
              "https://doi.org/10.1038/387454a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002940050280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024504296", 
              "https://doi.org/10.1007/s002940050280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017006118852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008130773", 
              "https://doi.org/10.1023/a:1017006118852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027838811", 
              "https://doi.org/10.1007/pl00006395"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-01", 
        "datePublishedReg": "2005-01-01", 
        "description": "Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular\u2014and contrary to the predictions of the mutation-drift hypothesis\u2014the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00239-004-0077-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1016442", 
            "issn": [
              "0022-2844", 
              "1432-1432"
            ], 
            "name": "Journal of Molecular Evolution", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "keywords": [
          "mutation-drift hypothesis", 
          "mitochondrial genetic code", 
          "genetic code", 
          "ancestral genomes", 
          "mitochondrial genome", 
          "codon reassignment", 
          "amino acids", 
          "new genetic codes", 
          "amino acid usage", 
          "standard genetic code", 
          "neutral expectations", 
          "genetic drift", 
          "amino acid requirements", 
          "natural selection", 
          "deleterious mutations", 
          "weak selection", 
          "genome", 
          "selection pressure", 
          "amino acid composition", 
          "codon", 
          "acid usage", 
          "appreciable frequency", 
          "acid requirements", 
          "variant codes", 
          "protein", 
          "mitochondria", 
          "acid composition", 
          "mutations", 
          "acid", 
          "synthesis cost", 
          "selection", 
          "first opportunity", 
          "key questions", 
          "hypothesis", 
          "reassignment", 
          "sole result", 
          "such reassignment", 
          "composition", 
          "drift", 
          "results", 
          "analysis", 
          "simple model", 
          "process", 
          "requirements", 
          "opportunities", 
          "comparison", 
          "prediction", 
          "questions", 
          "frequency", 
          "place", 
          "use", 
          "code", 
          "model", 
          "usage", 
          "stops", 
          "expectations", 
          "pressure", 
          "cost", 
          "independent codon reassignments", 
          "inferred amino acid usage", 
          "protein synthesis cost", 
          "most reassignments"
        ], 
        "name": "Mitochondrial Genetic Codes Evolve to Match Amino Acid Requirements of Proteins", 
        "pagination": "128-139", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038431459"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00239-004-0077-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15696375"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00239-004-0077-9", 
          "https://app.dimensions.ai/details/publication/pub.1038431459"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_406.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00239-004-0077-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00239-004-0077-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00239-004-0077-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00239-004-0077-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00239-004-0077-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    296 TRIPLES      22 PREDICATES      128 URIs      94 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00239-004-0077-9 schema:about N1817c4b9e71d45498b8cbd808ad15877
    2 N1c8103d3c874420bb83e23750688ebaf
    3 N4f5b2eda3f854e5bb59728fa8c182031
    4 N63bd961ea15342eeae2fc3a4cddf3458
    5 N694763b6551b4be58f946c9884221311
    6 N8b5ad2877a4b494cab3926254ab76959
    7 N8dacd4f735c643bfa4c601bd5d620bbf
    8 Nab0c6e63cd604730a824abbcdd376c6d
    9 Nae3d6f23a7c84344bf923add24332605
    10 Nc09e306e016a44a3beb059a62b937c3f
    11 Nc5fa8824278a42dbb0a3fe200d458cec
    12 Neac68cf73e084f1ba507b423cc3bd296
    13 Nf2ab963f47e24768a622369bef510be3
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nec4ce0ddc3fe4d5ab8644196bf9d1329
    17 schema:citation sg:pub.10.1007/bf00160240
    18 sg:pub.10.1007/bf00163805
    19 sg:pub.10.1007/bf01732340
    20 sg:pub.10.1007/bf02352290
    21 sg:pub.10.1007/bf02407301
    22 sg:pub.10.1007/pl00006210
    23 sg:pub.10.1007/pl00006381
    24 sg:pub.10.1007/pl00006395
    25 sg:pub.10.1007/pl00006427
    26 sg:pub.10.1007/pl00006575
    27 sg:pub.10.1007/s00239-001-0060-7
    28 sg:pub.10.1007/s002390010217
    29 sg:pub.10.1007/s002390010220
    30 sg:pub.10.1007/s002940050096
    31 sg:pub.10.1007/s002940050220
    32 sg:pub.10.1007/s002940050280
    33 sg:pub.10.1023/a:1017006118852
    34 sg:pub.10.1023/a:1017022522486
    35 sg:pub.10.1023/a:1017030708374
    36 sg:pub.10.1038/24094
    37 sg:pub.10.1038/282189a0
    38 sg:pub.10.1038/290457a0
    39 sg:pub.10.1038/341164a0
    40 sg:pub.10.1038/35047500
    41 sg:pub.10.1038/387454a0
    42 sg:pub.10.1038/387489a0
    43 schema:datePublished 2005-01
    44 schema:datePublishedReg 2005-01-01
    45 schema:description Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular—and contrary to the predictions of the mutation-drift hypothesis—the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.
    46 schema:genre article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N10bfc5521eea40d2af59488aa3964ffd
    50 Nf922b91690ec42f28e9be85667159b4b
    51 sg:journal.1016442
    52 schema:keywords acid
    53 acid composition
    54 acid requirements
    55 acid usage
    56 amino acid composition
    57 amino acid requirements
    58 amino acid usage
    59 amino acids
    60 analysis
    61 ancestral genomes
    62 appreciable frequency
    63 code
    64 codon
    65 codon reassignment
    66 comparison
    67 composition
    68 cost
    69 deleterious mutations
    70 drift
    71 expectations
    72 first opportunity
    73 frequency
    74 genetic code
    75 genetic drift
    76 genome
    77 hypothesis
    78 independent codon reassignments
    79 inferred amino acid usage
    80 key questions
    81 mitochondria
    82 mitochondrial genetic code
    83 mitochondrial genome
    84 model
    85 most reassignments
    86 mutation-drift hypothesis
    87 mutations
    88 natural selection
    89 neutral expectations
    90 new genetic codes
    91 opportunities
    92 place
    93 prediction
    94 pressure
    95 process
    96 protein
    97 protein synthesis cost
    98 questions
    99 reassignment
    100 requirements
    101 results
    102 selection
    103 selection pressure
    104 simple model
    105 sole result
    106 standard genetic code
    107 stops
    108 such reassignment
    109 synthesis cost
    110 usage
    111 use
    112 variant codes
    113 weak selection
    114 schema:name Mitochondrial Genetic Codes Evolve to Match Amino Acid Requirements of Proteins
    115 schema:pagination 128-139
    116 schema:productId N44099509fd2d41c8be5b8e724dcdbc3d
    117 Nd6c0e3c1eb1c44f0af3c235bd21b9580
    118 Nfc3f272977004d64b6290ff087070f1b
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038431459
    120 https://doi.org/10.1007/s00239-004-0077-9
    121 schema:sdDatePublished 2021-12-01T19:16
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher N9e225a30fb5a44719777c27712a7f8bd
    124 schema:url https://doi.org/10.1007/s00239-004-0077-9
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N10bfc5521eea40d2af59488aa3964ffd schema:volumeNumber 60
    129 rdf:type schema:PublicationVolume
    130 N1817c4b9e71d45498b8cbd808ad15877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Databases, Nucleic Acid
    132 rdf:type schema:DefinedTerm
    133 N1c8103d3c874420bb83e23750688ebaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Base Sequence
    135 rdf:type schema:DefinedTerm
    136 N44099509fd2d41c8be5b8e724dcdbc3d schema:name dimensions_id
    137 schema:value pub.1038431459
    138 rdf:type schema:PropertyValue
    139 N4f5b2eda3f854e5bb59728fa8c182031 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Evolution, Molecular
    141 rdf:type schema:DefinedTerm
    142 N63bd961ea15342eeae2fc3a4cddf3458 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Mutation
    144 rdf:type schema:DefinedTerm
    145 N694763b6551b4be58f946c9884221311 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Animals
    147 rdf:type schema:DefinedTerm
    148 N8b5ad2877a4b494cab3926254ab76959 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Mitochondrial Proteins
    150 rdf:type schema:DefinedTerm
    151 N8dacd4f735c643bfa4c601bd5d620bbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Selection, Genetic
    153 rdf:type schema:DefinedTerm
    154 N9e225a30fb5a44719777c27712a7f8bd schema:name Springer Nature - SN SciGraph project
    155 rdf:type schema:Organization
    156 Nab0c6e63cd604730a824abbcdd376c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Amino Acids
    158 rdf:type schema:DefinedTerm
    159 Nae3d6f23a7c84344bf923add24332605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name DNA, Mitochondrial
    161 rdf:type schema:DefinedTerm
    162 Nc09e306e016a44a3beb059a62b937c3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Humans
    164 rdf:type schema:DefinedTerm
    165 Nc5fa8824278a42dbb0a3fe200d458cec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Codon
    167 rdf:type schema:DefinedTerm
    168 Nd6afae6d37e84ae592019858335e9ce2 rdf:first sg:person.01142167260.64
    169 rdf:rest rdf:nil
    170 Nd6c0e3c1eb1c44f0af3c235bd21b9580 schema:name pubmed_id
    171 schema:value 15696375
    172 rdf:type schema:PropertyValue
    173 Ne355510b33464afc8358d18c3acc58c6 rdf:first sg:person.0743477444.73
    174 rdf:rest Nd6afae6d37e84ae592019858335e9ce2
    175 Neac68cf73e084f1ba507b423cc3bd296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Models, Genetic
    177 rdf:type schema:DefinedTerm
    178 Nec4ce0ddc3fe4d5ab8644196bf9d1329 rdf:first sg:person.0753552450.80
    179 rdf:rest Ne355510b33464afc8358d18c3acc58c6
    180 Nf2ab963f47e24768a622369bef510be3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Phylogeny
    182 rdf:type schema:DefinedTerm
    183 Nf922b91690ec42f28e9be85667159b4b schema:issueNumber 1
    184 rdf:type schema:PublicationIssue
    185 Nfc3f272977004d64b6290ff087070f1b schema:name doi
    186 schema:value 10.1007/s00239-004-0077-9
    187 rdf:type schema:PropertyValue
    188 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Biological Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Genetics
    193 rdf:type schema:DefinedTerm
    194 sg:journal.1016442 schema:issn 0022-2844
    195 1432-1432
    196 schema:name Journal of Molecular Evolution
    197 schema:publisher Springer Nature
    198 rdf:type schema:Periodical
    199 sg:person.01142167260.64 schema:affiliation grid-institutes:grid.7445.2
    200 schema:familyName Burt
    201 schema:givenName Austin
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64
    203 rdf:type schema:Person
    204 sg:person.0743477444.73 schema:affiliation grid-institutes:grid.7445.2
    205 schema:familyName Judson
    206 schema:givenName Olivia P.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743477444.73
    208 rdf:type schema:Person
    209 sg:person.0753552450.80 schema:affiliation grid-institutes:grid.7445.2
    210 schema:familyName Swire
    211 schema:givenName Jonathan
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753552450.80
    213 rdf:type schema:Person
    214 sg:pub.10.1007/bf00160240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032989643
    215 https://doi.org/10.1007/bf00160240
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/bf00163805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082571060
    218 https://doi.org/10.1007/bf00163805
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/bf01732340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544282
    221 https://doi.org/10.1007/bf01732340
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/bf02352290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022107533
    224 https://doi.org/10.1007/bf02352290
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/bf02407301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014779164
    227 https://doi.org/10.1007/bf02407301
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/pl00006210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030573539
    230 https://doi.org/10.1007/pl00006210
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/pl00006381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019442219
    233 https://doi.org/10.1007/pl00006381
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/pl00006395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027838811
    236 https://doi.org/10.1007/pl00006395
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/pl00006427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016537729
    239 https://doi.org/10.1007/pl00006427
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/pl00006575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014822805
    242 https://doi.org/10.1007/pl00006575
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s00239-001-0060-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014072284
    245 https://doi.org/10.1007/s00239-001-0060-7
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s002390010217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035465224
    248 https://doi.org/10.1007/s002390010217
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s002390010220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002982129
    251 https://doi.org/10.1007/s002390010220
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s002940050096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011283731
    254 https://doi.org/10.1007/s002940050096
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s002940050220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005741128
    257 https://doi.org/10.1007/s002940050220
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s002940050280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024504296
    260 https://doi.org/10.1007/s002940050280
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1023/a:1017006118852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008130773
    263 https://doi.org/10.1023/a:1017006118852
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1023/a:1017022522486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330430
    266 https://doi.org/10.1023/a:1017022522486
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1023/a:1017030708374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013279089
    269 https://doi.org/10.1023/a:1017030708374
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/24094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045605598
    272 https://doi.org/10.1038/24094
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/282189a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012580589
    275 https://doi.org/10.1038/282189a0
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/290457a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038487698
    278 https://doi.org/10.1038/290457a0
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/341164a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045261486
    281 https://doi.org/10.1038/341164a0
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/35047500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045696245
    284 https://doi.org/10.1038/35047500
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/387454a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022586566
    287 https://doi.org/10.1038/387454a0
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/387489a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014476080
    290 https://doi.org/10.1038/387489a0
    291 rdf:type schema:CreativeWork
    292 grid-institutes:grid.7445.2 schema:alternateName Centre for Bioinformatics, Biochemistry Building, Department of Biological Sciences, Imperial College, SW7 2AY, London, UK
    293 Department of Biology, Imperial College at Silwood Park, SL5 7PY, Ascot, Berks, UK
    294 schema:name Centre for Bioinformatics, Biochemistry Building, Department of Biological Sciences, Imperial College, SW7 2AY, London, UK
    295 Department of Biology, Imperial College at Silwood Park, SL5 7PY, Ascot, Berks, UK
    296 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...