Looking at mean payoff through foggy windows View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Paul Hunter, Guillermo A. Pérez, Jean-François Raskin

ABSTRACT

Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of full observation, they admit memoryless optimal strategies for both players and can be solved in NP∩coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of full observation is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean payoff, is undecidable. In this paper, we study the window mean-payoff objectives introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial observation. More... »

PAGES

1-21

References to SciGraph publications

  • 1979-06. Positional strategies for mean payoff games in INTERNATIONAL JOURNAL OF GAME THEORY
  • 2012. Acacia+, a Tool for LTL Synthesis in COMPUTER AIDED VERIFICATION
  • 2011. What’s Decidable about Weighted Automata? in AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS
  • 2000. Small Progress Measures for Solving Parity Games in STACS 2000
  • 2010. The Complexity of Partial-Observation Parity Games in LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING
  • 2013. Looking at Mean-Payoff and Total-Payoff through Windows in AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS
  • 2009. Alpaga: A Tool for Solving Parity Games with Imperfect Information in TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS
  • 2004. Positional Determinacy of Infinite Games in STACS 2004
  • 2003. Resource Interfaces in EMBEDDED SOFTWARE
  • 2006. Algorithms for Omega-Regular Games with Imperfect Information in COMPUTER SCIENCE LOGIC
  • 1995. On the synthesis of strategies in infinite games in STACS 95
  • 2010. Energy and Mean-Payoff Games with Imperfect Information in COMPUTER SCIENCE LOGIC
  • 2011-04. Faster algorithms for mean-payoff games in FORMAL METHODS IN SYSTEM DESIGN
  • 2010. Antichain Algorithms for Finite Automata in TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS
  • Journal

    TITLE

    Acta Informatica

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00236-017-0304-7

    DOI

    http://dx.doi.org/10.1007/s00236-017-0304-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092166285


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Libre de Bruxelles", 
              "id": "https://www.grid.ac/institutes/grid.4989.c", 
              "name": [
                "D\u00e9partement d\u2019Informatique, Universit\u00e9 libre de Bruxelles (ULB), Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hunter", 
            "givenName": "Paul", 
            "id": "sg:person.011147466557.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147466557.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Libre de Bruxelles", 
              "id": "https://www.grid.ac/institutes/grid.4989.c", 
              "name": [
                "D\u00e9partement d\u2019Informatique, Universit\u00e9 libre de Bruxelles (ULB), Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e9rez", 
            "givenName": "Guillermo A.", 
            "id": "sg:person.010152467525.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152467525.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Libre de Bruxelles", 
              "id": "https://www.grid.ac/institutes/grid.4989.c", 
              "name": [
                "D\u00e9partement d\u2019Informatique, Universit\u00e9 libre de Bruxelles (ULB), Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raskin", 
            "givenName": "Jean-Fran\u00e7ois", 
            "id": "sg:person.010207023561.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207023561.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/11874683_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002162926", 
              "https://doi.org/10.1007/11874683_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11874683_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002162926", 
              "https://doi.org/10.1007/11874683_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24372-1_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002364061", 
              "https://doi.org/10.1007/978-3-642-24372-1_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31424-7_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008110413", 
              "https://doi.org/10.1007/978-3-642-31424-7_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ipl.2014.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009324701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0000(84)90034-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24749-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014504198", 
              "https://doi.org/10.1007/978-3-540-24749-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24749-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014504198", 
              "https://doi.org/10.1007/978-3-540-24749-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00768-2_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017169424", 
              "https://doi.org/10.1007/978-3-642-00768-2_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00768-2_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017169424", 
              "https://doi.org/10.1007/978-3-642-00768-2_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01768705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021856463", 
              "https://doi.org/10.1007/bf01768705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01768705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021856463", 
              "https://doi.org/10.1007/bf01768705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/129712.129739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022048946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-16242-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024563150", 
              "https://doi.org/10.1007/978-3-642-16242-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10703-010-0105-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027686195", 
              "https://doi.org/10.1007/s10703-010-0105-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12002-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031282682", 
              "https://doi.org/10.1007/978-3-642-12002-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12002-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031282682", 
              "https://doi.org/10.1007/978-3-642-12002-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-59042-0_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034109179", 
              "https://doi.org/10.1007/3-540-59042-0_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45212-6_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034896734", 
              "https://doi.org/10.1007/978-3-540-45212-6_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45212-6_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034896734", 
              "https://doi.org/10.1007/978-3-540-45212-6_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15205-4_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035540783", 
              "https://doi.org/10.1007/978-3-642-15205-4_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15205-4_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035540783", 
              "https://doi.org/10.1007/978-3-642-15205-4_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(95)00188-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041478813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-02444-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044663508", 
              "https://doi.org/10.1007/978-3-319-02444-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46541-3_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044781598", 
              "https://doi.org/10.1007/3-540-46541-3_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3975(03)00427-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044823399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3975(03)00427-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044823399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2168/lmcs-3(3:5)2007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069150911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2168/lmcs-5(1:5)2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069150984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2168/lmcs-5(1:5)2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069150984"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of full observation, they admit memoryless optimal strategies for both players and can be solved in NP\u2229coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of full observation is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean payoff, is undecidable. In this paper, we study the window mean-payoff objectives introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial observation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00236-017-0304-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1133515", 
            "issn": [
              "0001-5903", 
              "1432-0525"
            ], 
            "name": "Acta Informatica", 
            "type": "Periodical"
          }
        ], 
        "name": "Looking at mean payoff through foggy windows", 
        "pagination": "1-21", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "18cd6f6bdded5e2965364180779d0fc2aab57e2ebf2bf441cfff3da863edd1c1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00236-017-0304-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092166285"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00236-017-0304-7", 
          "https://app.dimensions.ai/details/publication/pub.1092166285"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00236-017-0304-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00236-017-0304-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00236-017-0304-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00236-017-0304-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00236-017-0304-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      46 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00236-017-0304-7 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N6234ca24575a4fe0a7be46d7c22cb03f
    4 schema:citation sg:pub.10.1007/11874683_19
    5 sg:pub.10.1007/3-540-46541-3_24
    6 sg:pub.10.1007/3-540-59042-0_57
    7 sg:pub.10.1007/978-3-319-02444-8_10
    8 sg:pub.10.1007/978-3-540-24749-4_2
    9 sg:pub.10.1007/978-3-540-45212-6_9
    10 sg:pub.10.1007/978-3-642-00768-2_7
    11 sg:pub.10.1007/978-3-642-12002-2_2
    12 sg:pub.10.1007/978-3-642-15205-4_22
    13 sg:pub.10.1007/978-3-642-16242-8_1
    14 sg:pub.10.1007/978-3-642-24372-1_37
    15 sg:pub.10.1007/978-3-642-31424-7_45
    16 sg:pub.10.1007/bf01768705
    17 sg:pub.10.1007/s10703-010-0105-x
    18 https://doi.org/10.1016/0022-0000(84)90034-5
    19 https://doi.org/10.1016/0304-3975(95)00188-3
    20 https://doi.org/10.1016/j.ipl.2014.02.010
    21 https://doi.org/10.1016/s0304-3975(03)00427-4
    22 https://doi.org/10.1145/129712.129739
    23 https://doi.org/10.2168/lmcs-3(3:5)2007
    24 https://doi.org/10.2168/lmcs-5(1:5)2009
    25 schema:datePublished 2018-12
    26 schema:datePublishedReg 2018-12-01
    27 schema:description Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of full observation, they admit memoryless optimal strategies for both players and can be solved in NP∩coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of full observation is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean payoff, is undecidable. In this paper, we study the window mean-payoff objectives introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial observation.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf sg:journal.1133515
    32 schema:name Looking at mean payoff through foggy windows
    33 schema:pagination 1-21
    34 schema:productId N4f2dde711aaf49fe8108372b6766c9a4
    35 N544839ac28b64b96bc5732345b26e1f4
    36 N616e38515aec4f009d6fbd9467a423bc
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092166285
    38 https://doi.org/10.1007/s00236-017-0304-7
    39 schema:sdDatePublished 2019-04-11T01:21
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N4c26e5c5eb794adb887523defbb5f42a
    42 schema:url https://link.springer.com/10.1007%2Fs00236-017-0304-7
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N16c86c58ddf14852ba0861a058f0f88b rdf:first sg:person.010207023561.22
    47 rdf:rest rdf:nil
    48 N4c26e5c5eb794adb887523defbb5f42a schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N4f2dde711aaf49fe8108372b6766c9a4 schema:name doi
    51 schema:value 10.1007/s00236-017-0304-7
    52 rdf:type schema:PropertyValue
    53 N544839ac28b64b96bc5732345b26e1f4 schema:name dimensions_id
    54 schema:value pub.1092166285
    55 rdf:type schema:PropertyValue
    56 N616e38515aec4f009d6fbd9467a423bc schema:name readcube_id
    57 schema:value 18cd6f6bdded5e2965364180779d0fc2aab57e2ebf2bf441cfff3da863edd1c1
    58 rdf:type schema:PropertyValue
    59 N6234ca24575a4fe0a7be46d7c22cb03f rdf:first sg:person.011147466557.40
    60 rdf:rest N6f75f766b50343f2a414720e416b6669
    61 N6f75f766b50343f2a414720e416b6669 rdf:first sg:person.010152467525.34
    62 rdf:rest N16c86c58ddf14852ba0861a058f0f88b
    63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Applied Mathematics
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1133515 schema:issn 0001-5903
    70 1432-0525
    71 schema:name Acta Informatica
    72 rdf:type schema:Periodical
    73 sg:person.010152467525.34 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
    74 schema:familyName Pérez
    75 schema:givenName Guillermo A.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010152467525.34
    77 rdf:type schema:Person
    78 sg:person.010207023561.22 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
    79 schema:familyName Raskin
    80 schema:givenName Jean-François
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010207023561.22
    82 rdf:type schema:Person
    83 sg:person.011147466557.40 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
    84 schema:familyName Hunter
    85 schema:givenName Paul
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011147466557.40
    87 rdf:type schema:Person
    88 sg:pub.10.1007/11874683_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002162926
    89 https://doi.org/10.1007/11874683_19
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/3-540-46541-3_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044781598
    92 https://doi.org/10.1007/3-540-46541-3_24
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/3-540-59042-0_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034109179
    95 https://doi.org/10.1007/3-540-59042-0_57
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/978-3-319-02444-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044663508
    98 https://doi.org/10.1007/978-3-319-02444-8_10
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-540-24749-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014504198
    101 https://doi.org/10.1007/978-3-540-24749-4_2
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-540-45212-6_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034896734
    104 https://doi.org/10.1007/978-3-540-45212-6_9
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/978-3-642-00768-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017169424
    107 https://doi.org/10.1007/978-3-642-00768-2_7
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-3-642-12002-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031282682
    110 https://doi.org/10.1007/978-3-642-12002-2_2
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-642-15205-4_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035540783
    113 https://doi.org/10.1007/978-3-642-15205-4_22
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-642-16242-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024563150
    116 https://doi.org/10.1007/978-3-642-16242-8_1
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-642-24372-1_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002364061
    119 https://doi.org/10.1007/978-3-642-24372-1_37
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/978-3-642-31424-7_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008110413
    122 https://doi.org/10.1007/978-3-642-31424-7_45
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf01768705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021856463
    125 https://doi.org/10.1007/bf01768705
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10703-010-0105-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027686195
    128 https://doi.org/10.1007/s10703-010-0105-x
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0022-0000(84)90034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767026
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0304-3975(95)00188-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478813
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.ipl.2014.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009324701
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s0304-3975(03)00427-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044823399
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1145/129712.129739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022048946
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2168/lmcs-3(3:5)2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069150911
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2168/lmcs-5(1:5)2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069150984
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.4989.c schema:alternateName Université Libre de Bruxelles
    145 schema:name Département d’Informatique, Université libre de Bruxelles (ULB), Brussels, Belgium
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...