Quantitative parameters derived from 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging can accurately estimate the histologic grade of hypopharyngeal squamous cell ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-19

AUTHORS

Zhaoting Meng, Lingyu Zhang, Caiyun Huang, Yingshi Piao, Xiaohong Chen, Junfang Xian

ABSTRACT

PurposeAmong head and neck cancers, hypopharyngeal squamous cell carcinoma (HSCC) shows the highest malignancy, which is associated with histologic grading. This study was designed to investigate whether quantitative parameters derived from 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) can preoperatively estimate the histologic grade of HSCC.Methods18F-FDG PET/MRI of neck was successfully performed in 21 patients with histologically proven HSCC including poorly differentiated group (ten patients) and well-moderately differentiated group (eleven patients). Quantitative parameters derived from FDG-PET, diffusion-weighted imaging (DWI), and dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) were calculated based on volume of interest drawn on the tumor and compared between two groups. The efficacy of quantitative parameters for the estimation of histologic grades of HSCC was evaluated.ResultsThere were statistically significant differences in mean value of standard uptake value (SUV), apparent diffusion coefficient (ADC), and Ktrans derived from 18F-FDG PET/MRI of HSCC between two groups (p < 0.05). There was no statistically significant difference in other quantitative parameters derived from 18F-FDG PET/MRI of HSCC between two groups. The area under the curve (AUC) of the combination of SUVmean, ADCmean, and Ktrans in the estimation of histologic grade of HSCC was 0.936 with sensitivity of 90.0% and specificity of 81.8%.ConclusionThe combination of SUVmean, ADCmean, and Ktrans derived from 18F-FDG PET/MRI can accurately predict the histologic grade of HSCC preoperatively. More... »

PAGES

2153-2162

References to SciGraph publications

  • 2020-08-26. Multiparametric functional MRI and 18F-FDG-PET for survival prediction in patients with head and neck squamous cell carcinoma treated with (chemo)radiation in EUROPEAN RADIOLOGY
  • 2018-06-21. Associations Between [18F]FDG-PET and Complex Histopathological Parameters Including Tumor Cell Count and Expression of KI 67, EGFR, VEGF, HIF-1α, and p53 in Head and Neck Squamous Cell Carcinoma in MOLECULAR IMAGING AND BIOLOGY
  • 2014-12-09. Intratumor Textural Heterogeneity on Pretreatment 18F-FDG PET Images Predicts Response and Survival After Chemoradiotherapy for Hypopharyngeal Cancer in ANNALS OF SURGICAL ONCOLOGY
  • 2016-12-21. Nodal parameters of FDG PET/CT performed during radiotherapy for locally advanced mucosal primary head and neck squamous cell carcinoma can predict treatment outcomes: SUVmean and response rate are useful imaging biomarkers in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2021-02-11. Prognostic value of 18F-FDG PET/MRI in patients with advanced oropharyngeal and hypopharyngeal squamous cell carcinoma in ANNALS OF NUCLEAR MEDICINE
  • 2021-02-07. Predictive factors for simultaneous distant metastasis in head and neck cancer patients during the diagnostic work-up in EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY
  • 2021-07-21. Validation of the risk factors for primary control of early T-stage laryngeal, oropharyngeal, and hypopharyngeal squamous cell carcinoma by transoral surgery: a prospective observational study in INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY
  • 2020-05-01. Treatment patterns and survival outcomes of advanced hypopharyngeal squamous cell carcinoma in WORLD JOURNAL OF SURGICAL ONCOLOGY
  • 2014-05-13. The Role of Inflammation in Head and Neck Cancer in INFLAMMATION AND CANCER
  • 2020-06-15. Predictors for distant metastasis in head and neck cancer, with emphasis on age in EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00234-022-03052-2

    DOI

    http://dx.doi.org/10.1007/s00234-022-03052-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1151124106

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/36121469


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diffusion Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluorodeoxyglucose F18", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Head and Neck Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Positron-Emission Tomography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiopharmaceuticals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Squamous Cell Carcinoma of Head and Neck", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of PET/MRI, Shanghai Universal Medical Imaging Diagnostic Center, 200233, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.39436.3b", 
              "name": [
                "Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China", 
                "Department of PET/MRI, Shanghai Universal Medical Imaging Diagnostic Center, 200233, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meng", 
            "givenName": "Zhaoting", 
            "id": "sg:person.016111650241.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111650241.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Lingyu", 
            "id": "sg:person.014516707241.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014516707241.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Guangxi Medical University Cancer Hospital, 530022, Nanning, China", 
              "id": "http://www.grid.ac/institutes/grid.256607.0", 
              "name": [
                "Department of Radiology, Guangxi Medical University Cancer Hospital, 530022, Nanning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Caiyun", 
            "id": "sg:person.013071052041.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071052041.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, 100730, Beijing, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Pathology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China", 
                "Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, 100730, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Piao", 
            "givenName": "Yingshi", 
            "id": "sg:person.0640547723.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640547723.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xiaohong", 
            "id": "sg:person.0626514000.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626514000.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.24696.3f", 
              "name": [
                "Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xian", 
            "givenName": "Junfang", 
            "id": "sg:person.0770325140.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770325140.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-0837-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001341003", 
              "https://doi.org/10.1007/978-3-0348-0837-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11307-018-1223-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105047514", 
              "https://doi.org/10.1007/s11307-018-1223-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-020-07163-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130364392", 
              "https://doi.org/10.1007/s00330-020-07163-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12149-021-01590-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135328038", 
              "https://doi.org/10.1007/s12149-021-01590-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-014-4284-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048382978", 
              "https://doi.org/10.1245/s10434-014-4284-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00405-020-06118-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128501019", 
              "https://doi.org/10.1007/s00405-020-06118-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12957-020-01866-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127313969", 
              "https://doi.org/10.1186/s12957-020-01866-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00405-021-06678-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135195762", 
              "https://doi.org/10.1007/s00405-021-06678-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-016-3584-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006376177", 
              "https://doi.org/10.1007/s00259-016-3584-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10147-021-01992-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139832092", 
              "https://doi.org/10.1007/s10147-021-01992-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-09-19", 
        "datePublishedReg": "2022-09-19", 
        "description": "PurposeAmong head and neck cancers, hypopharyngeal squamous cell carcinoma (HSCC) shows the highest malignancy, which is associated with histologic grading. This study was designed to investigate whether quantitative parameters derived from 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) can preoperatively estimate the histologic grade of HSCC.Methods18F-FDG PET/MRI of neck was successfully performed in 21 patients with histologically proven HSCC including poorly differentiated group (ten patients) and well-moderately differentiated group (eleven patients). Quantitative parameters derived from FDG-PET, diffusion-weighted imaging (DWI), and dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) were calculated based on volume of interest drawn on the tumor and compared between two groups. The efficacy of quantitative parameters for the estimation of histologic grades of HSCC was evaluated.ResultsThere were statistically significant differences in mean value of standard uptake value (SUV), apparent diffusion coefficient (ADC), and Ktrans derived from 18F-FDG PET/MRI of HSCC between two groups (p\u2009<\u20090.05). There was no statistically significant difference in other quantitative parameters derived from 18F-FDG PET/MRI of HSCC between two groups. The area under the curve (AUC) of the combination of SUVmean, ADCmean, and Ktrans in the estimation of histologic grade of HSCC was 0.936 with sensitivity of 90.0% and specificity of 81.8%.ConclusionThe combination of SUVmean, ADCmean, and Ktrans derived from 18F-FDG PET/MRI can accurately predict the histologic grade of HSCC preoperatively.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00234-022-03052-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1055404", 
            "issn": [
              "0028-3940", 
              "1432-1920"
            ], 
            "name": "Neuroradiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "64"
          }
        ], 
        "keywords": [
          "hypopharyngeal squamous cell carcinoma", 
          "tomography/magnetic resonance imaging", 
          "positron emission tomography/magnetic resonance imaging", 
          "PET/MRI", 
          "squamous cell carcinoma", 
          "dynamic contrast-enhanced magnetic resonance imaging", 
          "histologic grade", 
          "standard uptake value", 
          "magnetic resonance imaging", 
          "diffusion-weighted imaging", 
          "resonance imaging", 
          "cell carcinoma", 
          "apparent diffusion coefficient", 
          "contrast-enhanced magnetic resonance imaging", 
          "significant differences", 
          "FDG-PET", 
          "histologic grading", 
          "neck cancer", 
          "high malignancy", 
          "uptake value", 
          "quantitative parameters", 
          "MRI", 
          "Ktrans", 
          "volume of interest", 
          "carcinoma", 
          "SUVmean", 
          "ADCmean", 
          "imaging", 
          "grade", 
          "group", 
          "patients", 
          "malignancy", 
          "differentiated groups", 
          "ResultsThere", 
          "mean value", 
          "tumors", 
          "cancer", 
          "neck", 
          "efficacy", 
          "differences", 
          "grading", 
          "specificity", 
          "head", 
          "combination", 
          "study", 
          "sensitivity", 
          "volume", 
          "values", 
          "curves", 
          "parameters", 
          "area", 
          "interest", 
          "estimation", 
          "coefficient", 
          "diffusion coefficient"
        ], 
        "name": "Quantitative parameters derived from 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging can accurately estimate the histologic grade of hypopharyngeal squamous cell carcinoma preoperatively", 
        "pagination": "2153-2162", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1151124106"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00234-022-03052-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "36121469"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00234-022-03052-2", 
          "https://app.dimensions.ai/details/publication/pub.1151124106"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_936.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00234-022-03052-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-022-03052-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-022-03052-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-022-03052-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-022-03052-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    240 TRIPLES      21 PREDICATES      99 URIs      80 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00234-022-03052-2 schema:about N234a555c99cd4ba3ac548f44efeb0548
    2 N44d8efe181ae4d76a480c23e297eaedd
    3 N6f30c04c823a45a5ba8924a177c3ba78
    4 Nb3d22a704c4343e7b98a1d4e5d7abadb
    5 Nc1a0d4874e0e4f69ad8111e54b22b8e8
    6 Ncdf86864d2f94e8e91c87718ef03eb34
    7 Nf6cc2f8b4f9845a9be59e00b1f6250a2
    8 Nffc7dca3f2274da5ad6bd974f64821b5
    9 anzsrc-for:11
    10 anzsrc-for:1103
    11 anzsrc-for:1112
    12 schema:author N48b626aebc14428fa832ec5fd3a690ef
    13 schema:citation sg:pub.10.1007/978-3-0348-0837-8_5
    14 sg:pub.10.1007/s00259-016-3584-1
    15 sg:pub.10.1007/s00330-020-07163-3
    16 sg:pub.10.1007/s00405-020-06118-0
    17 sg:pub.10.1007/s00405-021-06678-9
    18 sg:pub.10.1007/s10147-021-01992-y
    19 sg:pub.10.1007/s11307-018-1223-x
    20 sg:pub.10.1007/s12149-021-01590-y
    21 sg:pub.10.1186/s12957-020-01866-z
    22 sg:pub.10.1245/s10434-014-4284-3
    23 schema:datePublished 2022-09-19
    24 schema:datePublishedReg 2022-09-19
    25 schema:description PurposeAmong head and neck cancers, hypopharyngeal squamous cell carcinoma (HSCC) shows the highest malignancy, which is associated with histologic grading. This study was designed to investigate whether quantitative parameters derived from 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) can preoperatively estimate the histologic grade of HSCC.Methods18F-FDG PET/MRI of neck was successfully performed in 21 patients with histologically proven HSCC including poorly differentiated group (ten patients) and well-moderately differentiated group (eleven patients). Quantitative parameters derived from FDG-PET, diffusion-weighted imaging (DWI), and dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) were calculated based on volume of interest drawn on the tumor and compared between two groups. The efficacy of quantitative parameters for the estimation of histologic grades of HSCC was evaluated.ResultsThere were statistically significant differences in mean value of standard uptake value (SUV), apparent diffusion coefficient (ADC), and Ktrans derived from 18F-FDG PET/MRI of HSCC between two groups (p < 0.05). There was no statistically significant difference in other quantitative parameters derived from 18F-FDG PET/MRI of HSCC between two groups. The area under the curve (AUC) of the combination of SUVmean, ADCmean, and Ktrans in the estimation of histologic grade of HSCC was 0.936 with sensitivity of 90.0% and specificity of 81.8%.ConclusionThe combination of SUVmean, ADCmean, and Ktrans derived from 18F-FDG PET/MRI can accurately predict the histologic grade of HSCC preoperatively.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N112aa04c884e4d8ba5ed579335815dcd
    29 Naef38fed880e4d349a6d5e629b7c87c2
    30 sg:journal.1055404
    31 schema:keywords ADCmean
    32 FDG-PET
    33 Ktrans
    34 MRI
    35 PET/MRI
    36 ResultsThere
    37 SUVmean
    38 apparent diffusion coefficient
    39 area
    40 cancer
    41 carcinoma
    42 cell carcinoma
    43 coefficient
    44 combination
    45 contrast-enhanced magnetic resonance imaging
    46 curves
    47 differences
    48 differentiated groups
    49 diffusion coefficient
    50 diffusion-weighted imaging
    51 dynamic contrast-enhanced magnetic resonance imaging
    52 efficacy
    53 estimation
    54 grade
    55 grading
    56 group
    57 head
    58 high malignancy
    59 histologic grade
    60 histologic grading
    61 hypopharyngeal squamous cell carcinoma
    62 imaging
    63 interest
    64 magnetic resonance imaging
    65 malignancy
    66 mean value
    67 neck
    68 neck cancer
    69 parameters
    70 patients
    71 positron emission tomography/magnetic resonance imaging
    72 quantitative parameters
    73 resonance imaging
    74 sensitivity
    75 significant differences
    76 specificity
    77 squamous cell carcinoma
    78 standard uptake value
    79 study
    80 tomography/magnetic resonance imaging
    81 tumors
    82 uptake value
    83 values
    84 volume
    85 volume of interest
    86 schema:name Quantitative parameters derived from 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging can accurately estimate the histologic grade of hypopharyngeal squamous cell carcinoma preoperatively
    87 schema:pagination 2153-2162
    88 schema:productId N7218b7bdc32d4f6cae090443ce72b421
    89 Nf29670df01d94572927be56b99d8b172
    90 Nffe7c7cdc904462eb1d22972bf932eb8
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151124106
    92 https://doi.org/10.1007/s00234-022-03052-2
    93 schema:sdDatePublished 2022-12-01T06:44
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N39b97dff366d4d4cb1aba039d13cdd8c
    96 schema:url https://doi.org/10.1007/s00234-022-03052-2
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N0c4055ca5dd7438e9646ac084a94af87 rdf:first sg:person.0626514000.03
    101 rdf:rest N8de8147439f643b3a7e03330e7e48ae9
    102 N112aa04c884e4d8ba5ed579335815dcd schema:volumeNumber 64
    103 rdf:type schema:PublicationVolume
    104 N234a555c99cd4ba3ac548f44efeb0548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Magnetic Resonance Imaging
    106 rdf:type schema:DefinedTerm
    107 N39b97dff366d4d4cb1aba039d13cdd8c schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N44d8efe181ae4d76a480c23e297eaedd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Humans
    111 rdf:type schema:DefinedTerm
    112 N48b626aebc14428fa832ec5fd3a690ef rdf:first sg:person.016111650241.34
    113 rdf:rest Nccbc5f40d7c24a8ba068597576bb33fa
    114 N6f30c04c823a45a5ba8924a177c3ba78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Head and Neck Neoplasms
    116 rdf:type schema:DefinedTerm
    117 N7218b7bdc32d4f6cae090443ce72b421 schema:name pubmed_id
    118 schema:value 36121469
    119 rdf:type schema:PropertyValue
    120 N820029cb905147ffb5d51a99a25328eb rdf:first sg:person.013071052041.65
    121 rdf:rest Ncab50f60bb6b4b2bb3ea456f3b97e80d
    122 N8de8147439f643b3a7e03330e7e48ae9 rdf:first sg:person.0770325140.14
    123 rdf:rest rdf:nil
    124 Naef38fed880e4d349a6d5e629b7c87c2 schema:issueNumber 11
    125 rdf:type schema:PublicationIssue
    126 Nb3d22a704c4343e7b98a1d4e5d7abadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Positron-Emission Tomography
    128 rdf:type schema:DefinedTerm
    129 Nc1a0d4874e0e4f69ad8111e54b22b8e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Radiopharmaceuticals
    131 rdf:type schema:DefinedTerm
    132 Ncab50f60bb6b4b2bb3ea456f3b97e80d rdf:first sg:person.0640547723.28
    133 rdf:rest N0c4055ca5dd7438e9646ac084a94af87
    134 Nccbc5f40d7c24a8ba068597576bb33fa rdf:first sg:person.014516707241.95
    135 rdf:rest N820029cb905147ffb5d51a99a25328eb
    136 Ncdf86864d2f94e8e91c87718ef03eb34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Squamous Cell Carcinoma of Head and Neck
    138 rdf:type schema:DefinedTerm
    139 Nf29670df01d94572927be56b99d8b172 schema:name doi
    140 schema:value 10.1007/s00234-022-03052-2
    141 rdf:type schema:PropertyValue
    142 Nf6cc2f8b4f9845a9be59e00b1f6250a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Diffusion Magnetic Resonance Imaging
    144 rdf:type schema:DefinedTerm
    145 Nffc7dca3f2274da5ad6bd974f64821b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Fluorodeoxyglucose F18
    147 rdf:type schema:DefinedTerm
    148 Nffe7c7cdc904462eb1d22972bf932eb8 schema:name dimensions_id
    149 schema:value pub.1151124106
    150 rdf:type schema:PropertyValue
    151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Medical and Health Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Clinical Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Oncology and Carcinogenesis
    159 rdf:type schema:DefinedTerm
    160 sg:journal.1055404 schema:issn 0028-3940
    161 1432-1920
    162 schema:name Neuroradiology
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.013071052041.65 schema:affiliation grid-institutes:grid.256607.0
    166 schema:familyName Huang
    167 schema:givenName Caiyun
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013071052041.65
    169 rdf:type schema:Person
    170 sg:person.014516707241.95 schema:affiliation grid-institutes:grid.24696.3f
    171 schema:familyName Zhang
    172 schema:givenName Lingyu
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014516707241.95
    174 rdf:type schema:Person
    175 sg:person.016111650241.34 schema:affiliation grid-institutes:grid.39436.3b
    176 schema:familyName Meng
    177 schema:givenName Zhaoting
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111650241.34
    179 rdf:type schema:Person
    180 sg:person.0626514000.03 schema:affiliation grid-institutes:grid.24696.3f
    181 schema:familyName Chen
    182 schema:givenName Xiaohong
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626514000.03
    184 rdf:type schema:Person
    185 sg:person.0640547723.28 schema:affiliation grid-institutes:None
    186 schema:familyName Piao
    187 schema:givenName Yingshi
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640547723.28
    189 rdf:type schema:Person
    190 sg:person.0770325140.14 schema:affiliation grid-institutes:grid.24696.3f
    191 schema:familyName Xian
    192 schema:givenName Junfang
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770325140.14
    194 rdf:type schema:Person
    195 sg:pub.10.1007/978-3-0348-0837-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001341003
    196 https://doi.org/10.1007/978-3-0348-0837-8_5
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00259-016-3584-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006376177
    199 https://doi.org/10.1007/s00259-016-3584-1
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00330-020-07163-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130364392
    202 https://doi.org/10.1007/s00330-020-07163-3
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00405-020-06118-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128501019
    205 https://doi.org/10.1007/s00405-020-06118-0
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00405-021-06678-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135195762
    208 https://doi.org/10.1007/s00405-021-06678-9
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s10147-021-01992-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1139832092
    211 https://doi.org/10.1007/s10147-021-01992-y
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11307-018-1223-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105047514
    214 https://doi.org/10.1007/s11307-018-1223-x
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s12149-021-01590-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1135328038
    217 https://doi.org/10.1007/s12149-021-01590-y
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/s12957-020-01866-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1127313969
    220 https://doi.org/10.1186/s12957-020-01866-z
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1245/s10434-014-4284-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048382978
    223 https://doi.org/10.1245/s10434-014-4284-3
    224 rdf:type schema:CreativeWork
    225 grid-institutes:None schema:alternateName Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, 100730, Beijing, China
    226 schema:name Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, 100730, Beijing, China
    227 Department of Pathology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
    228 rdf:type schema:Organization
    229 grid-institutes:grid.24696.3f schema:alternateName Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
    230 Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China
    231 schema:name Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
    232 Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China
    233 rdf:type schema:Organization
    234 grid-institutes:grid.256607.0 schema:alternateName Department of Radiology, Guangxi Medical University Cancer Hospital, 530022, Nanning, China
    235 schema:name Department of Radiology, Guangxi Medical University Cancer Hospital, 530022, Nanning, China
    236 rdf:type schema:Organization
    237 grid-institutes:grid.39436.3b schema:alternateName Department of PET/MRI, Shanghai Universal Medical Imaging Diagnostic Center, 200233, Shanghai, China
    238 schema:name Department of PET/MRI, Shanghai Universal Medical Imaging Diagnostic Center, 200233, Shanghai, China
    239 Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No. 1, DongJiaoMinXiang Street, Dongcheng District, 100730, Beijing, China
    240 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...