Imaging endpoints of intracranial atherosclerosis using vessel wall MR imaging: a systematic review View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-07

AUTHORS

Jae W. Song, Athanasios Pavlou, Morgan P. Burke, Haochang Shou, Kofi-Buaku Atsina, Jiayu Xiao, Laurie A. Loevner, David Mankoff, Zhaoyang Fan, Scott E. Kasner

ABSTRACT

PurposeThe vessel wall MR imaging (VWI) literature was systematically reviewed to assess the criteria and measurement methods of VWI-related imaging endpoints for symptomatic intracranial plaque in patients with ischemic events.MethodsPubMed, Scopus, Web of Science, EMBASE, and Cochrane databases were searched up to October 2019. Two independent reviewers extracted data from 47 studies. A modified Guideline for Reporting Reliability and Agreement Studies was used to assess completeness of reporting.ResultsThe specific VWI-pulse sequence used to identify plaque was reported in 51% of studies. A VWI-based criterion to define plaque was reported in 38% of studies. A definition for culprit plaque was reported in 40% of studies. Frequently scored qualitative imaging endpoints were plaque quadrant (21%) and enhancement (21%). Frequently measured quantitative imaging endpoints were stenosis (19%), lumen area (15%), and remodeling index (14%). Reproducibility for all endpoints ranged from good to excellent (range: ICCT1 hyperintensity = 0.451 to ICCstenosis = 0.983). However, rater specialty and years of experience varied among studies.ConclusionsInvestigators are using different criteria to identify and measure VWI-imaging endpoints for culprit intracranial plaque. Early awareness of these differences to address methods of acquisition and measurement will help focus research resources and efforts in technique optimization and measurement reproducibility. Consensual definitions to detect plaque will be important to develop automatic lesion detection tools particularly in the era of radiomics. More... »

PAGES

847-856

References to SciGraph publications

  • 2019-12-17. Spatial Distribution of Intracranial Vessel Wall Enhancement in Hypertension and Primary Angiitis of the CNS in SCIENTIFIC REPORTS
  • 2018-06-14. 3D whole-brain vessel wall cardiovascular magnetic resonance imaging: a study on the reliability in the quantification of intracranial vessel dimensions in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2018-06-07. Quantitative assessment of symptomatic intracranial atherosclerosis and lenticulostriate arteries in recent stroke patients using whole-brain high-resolution cardiovascular magnetic resonance imaging in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2019-01-24. Assessment of quantitative methods for enhancement measurement on vessel wall magnetic resonance imaging evaluation of intracranial atherosclerosis in NEURORADIOLOGY
  • 2018-04-09. Identification of high-risk plaque features in intracranial atherosclerosis: initial experience using a radiomic approach in EUROPEAN RADIOLOGY
  • 2018-04-25. High resolution magnetic resonance imaging in pathogenesis diagnosis of single lenticulostriate infarction with nonstenotic middle cerebral artery, a retrospective study in BMC NEUROLOGY
  • 2013-05-19. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2015-09-16. An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery in EUROPEAN RADIOLOGY
  • 2017-01-10. Plaque distribution of low-grade basilar artery atherosclerosis and its clinical relevance in BMC NEUROLOGY
  • 2019-03-04. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI in NEURORADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00234-020-02575-w

    DOI

    http://dx.doi.org/10.1007/s00234-020-02575-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1131505340

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33029735


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intracranial Arteriosclerosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Angiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plaque, Atherosclerotic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Jae W.", 
            "id": "sg:person.013450535552.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013450535552.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pavlou", 
            "givenName": "Athanasios", 
            "id": "sg:person.015437000575.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437000575.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burke", 
            "givenName": "Morgan P.", 
            "id": "sg:person.012077351315.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077351315.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shou", 
            "givenName": "Haochang", 
            "id": "sg:person.01263056704.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263056704.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Atsina", 
            "givenName": "Kofi-Buaku", 
            "id": "sg:person.01340002315.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340002315.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.50956.3f", 
              "name": [
                "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Jiayu", 
            "id": "sg:person.010005244404.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005244404.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loevner", 
            "givenName": "Laurie A.", 
            "id": "sg:person.01030026175.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030026175.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mankoff", 
            "givenName": "David", 
            "id": "sg:person.01331452145.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331452145.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.50956.3f", 
              "name": [
                "Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "Zhaoyang", 
            "id": "sg:person.01136172260.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.411115.1", 
              "name": [
                "Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kasner", 
            "givenName": "Scott E.", 
            "id": "sg:person.01220320744.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220320744.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12883-016-0785-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011165819", 
              "https://doi.org/10.1186/s12883-016-0785-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-018-0465-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104460760", 
              "https://doi.org/10.1186/s12968-018-0465-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-018-0453-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104560508", 
              "https://doi.org/10.1186/s12968-018-0453-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00234-019-02190-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112519634", 
              "https://doi.org/10.1007/s00234-019-02190-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-55634-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123464349", 
              "https://doi.org/10.1038/s41598-019-55634-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-013-0237-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012902178", 
              "https://doi.org/10.1007/s10554-013-0237-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5395-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103193323", 
              "https://doi.org/10.1007/s00330-018-5395-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12883-018-1054-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103645378", 
              "https://doi.org/10.1186/s12883-018-1054-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-4008-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009298470", 
              "https://doi.org/10.1007/s00330-015-4008-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00234-019-02167-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111639462", 
              "https://doi.org/10.1007/s00234-019-02167-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-10-07", 
        "datePublishedReg": "2020-10-07", 
        "description": "PurposeThe vessel wall MR imaging (VWI) literature was systematically reviewed to assess the criteria and measurement methods of VWI-related imaging endpoints for symptomatic intracranial plaque in patients with ischemic events.MethodsPubMed, Scopus, Web of Science, EMBASE, and Cochrane databases were searched up to October 2019. Two independent reviewers extracted data from 47 studies. A modified Guideline for Reporting Reliability and Agreement Studies was used to assess completeness of reporting.ResultsThe specific VWI-pulse sequence used to identify plaque was reported in 51% of studies. A VWI-based criterion to define plaque was reported in 38% of studies. A definition for culprit plaque was reported in 40% of studies. Frequently scored qualitative imaging endpoints were plaque quadrant (21%) and enhancement (21%). Frequently measured quantitative imaging endpoints were stenosis (19%), lumen area (15%), and remodeling index (14%). Reproducibility for all endpoints ranged from good to excellent (range: ICCT1 hyperintensity\u2009=\u20090.451 to ICCstenosis\u2009=\u20090.983). However, rater specialty and years of experience varied among studies.ConclusionsInvestigators are using different criteria to identify and measure VWI-imaging endpoints for\u00a0culprit intracranial plaque. Early awareness of these differences to address methods of acquisition and measurement will help focus research resources and efforts in technique optimization and measurement reproducibility. Consensual definitions to detect plaque will be important to develop automatic lesion detection tools particularly in the era of radiomics.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00234-020-02575-w", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8388914", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1055404", 
            "issn": [
              "0028-3940", 
              "1432-1920"
            ], 
            "name": "Neuroradiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "63"
          }
        ], 
        "keywords": [
          "intracranial plaques", 
          "era of radiomics", 
          "vessel wall MR imaging", 
          "completeness of reporting", 
          "Web of Science", 
          "ischemic events", 
          "Cochrane Database", 
          "culprit plaques", 
          "intracranial atherosclerosis", 
          "independent reviewers", 
          "systematic review", 
          "lumen area", 
          "plaques", 
          "MR imaging", 
          "endpoint", 
          "modified guideline", 
          "agreement study", 
          "years of experience", 
          "imaging literature", 
          "early awareness", 
          "VWI", 
          "patients", 
          "MethodsPubMed", 
          "EMBASE", 
          "stenosis", 
          "consensual definition", 
          "atherosclerosis", 
          "study", 
          "criteria", 
          "reporting reliability", 
          "measurement reproducibility", 
          "Scopus", 
          "technique optimization", 
          "reviewers", 
          "radiomics", 
          "guidelines", 
          "specialties", 
          "imaging", 
          "research resources", 
          "review", 
          "years", 
          "reporting", 
          "index", 
          "differences", 
          "database", 
          "reproducibility", 
          "awareness", 
          "events", 
          "method of acquisition", 
          "experience", 
          "definition", 
          "different criteria", 
          "literature", 
          "data", 
          "method", 
          "detection tools", 
          "Web", 
          "area", 
          "acquisition", 
          "completeness", 
          "efforts", 
          "tool", 
          "era", 
          "enhancement", 
          "reliability", 
          "measurements", 
          "measurement method", 
          "sequence", 
          "science", 
          "resources", 
          "optimization"
        ], 
        "name": "Imaging endpoints of intracranial atherosclerosis using vessel wall MR imaging: a systematic review", 
        "pagination": "847-856", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1131505340"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00234-020-02575-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33029735"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00234-020-02575-w", 
          "https://app.dimensions.ai/details/publication/pub.1131505340"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_866.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00234-020-02575-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-020-02575-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-020-02575-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-020-02575-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-020-02575-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      112 URIs      94 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00234-020-02575-w schema:about N06e662762beb46ab8d637782000b8026
    2 N2743abde84474ce7a624a9785abe510f
    3 N4e65ad9d83d34ee4826bc3970b12f7fd
    4 N6a36aa9bd8a94d31b20fdd8da8db56cd
    5 Nae980d4b1d494611ac56a3541d0541f0
    6 Nf21a71e2415d4d06bad59ccb32d86da4
    7 anzsrc-for:11
    8 anzsrc-for:1102
    9 schema:author N0c63f328456549e3a70d6f26d982c9c5
    10 schema:citation sg:pub.10.1007/s00234-019-02167-3
    11 sg:pub.10.1007/s00234-019-02190-4
    12 sg:pub.10.1007/s00330-015-4008-5
    13 sg:pub.10.1007/s00330-018-5395-1
    14 sg:pub.10.1007/s10554-013-0237-3
    15 sg:pub.10.1038/s41598-019-55634-5
    16 sg:pub.10.1186/s12883-016-0785-y
    17 sg:pub.10.1186/s12883-018-1054-z
    18 sg:pub.10.1186/s12968-018-0453-z
    19 sg:pub.10.1186/s12968-018-0465-8
    20 schema:datePublished 2020-10-07
    21 schema:datePublishedReg 2020-10-07
    22 schema:description PurposeThe vessel wall MR imaging (VWI) literature was systematically reviewed to assess the criteria and measurement methods of VWI-related imaging endpoints for symptomatic intracranial plaque in patients with ischemic events.MethodsPubMed, Scopus, Web of Science, EMBASE, and Cochrane databases were searched up to October 2019. Two independent reviewers extracted data from 47 studies. A modified Guideline for Reporting Reliability and Agreement Studies was used to assess completeness of reporting.ResultsThe specific VWI-pulse sequence used to identify plaque was reported in 51% of studies. A VWI-based criterion to define plaque was reported in 38% of studies. A definition for culprit plaque was reported in 40% of studies. Frequently scored qualitative imaging endpoints were plaque quadrant (21%) and enhancement (21%). Frequently measured quantitative imaging endpoints were stenosis (19%), lumen area (15%), and remodeling index (14%). Reproducibility for all endpoints ranged from good to excellent (range: ICCT1 hyperintensity = 0.451 to ICCstenosis = 0.983). However, rater specialty and years of experience varied among studies.ConclusionsInvestigators are using different criteria to identify and measure VWI-imaging endpoints for culprit intracranial plaque. Early awareness of these differences to address methods of acquisition and measurement will help focus research resources and efforts in technique optimization and measurement reproducibility. Consensual definitions to detect plaque will be important to develop automatic lesion detection tools particularly in the era of radiomics.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N40fe11e69e8845a4a61cb526163e5448
    26 N89482a7dfb4d4215b0ab5e7b8cecf030
    27 sg:journal.1055404
    28 schema:keywords Cochrane Database
    29 EMBASE
    30 MR imaging
    31 MethodsPubMed
    32 Scopus
    33 VWI
    34 Web
    35 Web of Science
    36 acquisition
    37 agreement study
    38 area
    39 atherosclerosis
    40 awareness
    41 completeness
    42 completeness of reporting
    43 consensual definition
    44 criteria
    45 culprit plaques
    46 data
    47 database
    48 definition
    49 detection tools
    50 differences
    51 different criteria
    52 early awareness
    53 efforts
    54 endpoint
    55 enhancement
    56 era
    57 era of radiomics
    58 events
    59 experience
    60 guidelines
    61 imaging
    62 imaging literature
    63 independent reviewers
    64 index
    65 intracranial atherosclerosis
    66 intracranial plaques
    67 ischemic events
    68 literature
    69 lumen area
    70 measurement method
    71 measurement reproducibility
    72 measurements
    73 method
    74 method of acquisition
    75 modified guideline
    76 optimization
    77 patients
    78 plaques
    79 radiomics
    80 reliability
    81 reporting
    82 reporting reliability
    83 reproducibility
    84 research resources
    85 resources
    86 review
    87 reviewers
    88 science
    89 sequence
    90 specialties
    91 stenosis
    92 study
    93 systematic review
    94 technique optimization
    95 tool
    96 vessel wall MR imaging
    97 years
    98 years of experience
    99 schema:name Imaging endpoints of intracranial atherosclerosis using vessel wall MR imaging: a systematic review
    100 schema:pagination 847-856
    101 schema:productId N1cfc646dfb4644b3b7c00cc9a047432e
    102 Nec759e53db634cfea199c770c4762818
    103 Nf7001c062f454b619f8a199fca4bd392
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131505340
    105 https://doi.org/10.1007/s00234-020-02575-w
    106 schema:sdDatePublished 2022-12-01T06:41
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N9b678600c20f457b9f3ba857f8600196
    109 schema:url https://doi.org/10.1007/s00234-020-02575-w
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N06e662762beb46ab8d637782000b8026 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Plaque, Atherosclerotic
    115 rdf:type schema:DefinedTerm
    116 N091350c44c6d4fcebeac552edb8ad531 rdf:first sg:person.01263056704.62
    117 rdf:rest Nd579a682a6864e5f830fc71d24638b1c
    118 N0c63f328456549e3a70d6f26d982c9c5 rdf:first sg:person.013450535552.37
    119 rdf:rest N4de2b3e7338546a2832e42d0e08b7297
    120 N1cfc646dfb4644b3b7c00cc9a047432e schema:name doi
    121 schema:value 10.1007/s00234-020-02575-w
    122 rdf:type schema:PropertyValue
    123 N2743abde84474ce7a624a9785abe510f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Reproducibility of Results
    125 rdf:type schema:DefinedTerm
    126 N40fe11e69e8845a4a61cb526163e5448 schema:volumeNumber 63
    127 rdf:type schema:PublicationVolume
    128 N4de2b3e7338546a2832e42d0e08b7297 rdf:first sg:person.015437000575.82
    129 rdf:rest N7e22fddde5544aa48a67086d54a78c61
    130 N4e65ad9d83d34ee4826bc3970b12f7fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Magnetic Resonance Angiography
    132 rdf:type schema:DefinedTerm
    133 N6a36aa9bd8a94d31b20fdd8da8db56cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Magnetic Resonance Imaging
    135 rdf:type schema:DefinedTerm
    136 N7e22fddde5544aa48a67086d54a78c61 rdf:first sg:person.012077351315.22
    137 rdf:rest N091350c44c6d4fcebeac552edb8ad531
    138 N89482a7dfb4d4215b0ab5e7b8cecf030 schema:issueNumber 6
    139 rdf:type schema:PublicationIssue
    140 N946198def3604c0bb323cc3300f423e4 rdf:first sg:person.010005244404.21
    141 rdf:rest N9d8107d76ea24fd89adab0793670d19e
    142 N9b678600c20f457b9f3ba857f8600196 schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 N9d8107d76ea24fd89adab0793670d19e rdf:first sg:person.01030026175.15
    145 rdf:rest Ne8e014cf86944c7aa529f705f4c54376
    146 N9f2a7e88f8064c5c8fd8ca16a82f3cea rdf:first sg:person.01136172260.58
    147 rdf:rest Nab7cc8dd2bea4003bf422a8586ec8582
    148 Nab7cc8dd2bea4003bf422a8586ec8582 rdf:first sg:person.01220320744.34
    149 rdf:rest rdf:nil
    150 Nae980d4b1d494611ac56a3541d0541f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Intracranial Arteriosclerosis
    152 rdf:type schema:DefinedTerm
    153 Nd579a682a6864e5f830fc71d24638b1c rdf:first sg:person.01340002315.45
    154 rdf:rest N946198def3604c0bb323cc3300f423e4
    155 Ne8e014cf86944c7aa529f705f4c54376 rdf:first sg:person.01331452145.12
    156 rdf:rest N9f2a7e88f8064c5c8fd8ca16a82f3cea
    157 Nec759e53db634cfea199c770c4762818 schema:name pubmed_id
    158 schema:value 33029735
    159 rdf:type schema:PropertyValue
    160 Nf21a71e2415d4d06bad59ccb32d86da4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Humans
    162 rdf:type schema:DefinedTerm
    163 Nf7001c062f454b619f8a199fca4bd392 schema:name dimensions_id
    164 schema:value pub.1131505340
    165 rdf:type schema:PropertyValue
    166 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Medical and Health Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Cardiorespiratory Medicine and Haematology
    171 rdf:type schema:DefinedTerm
    172 sg:grant.8388914 http://pending.schema.org/fundedItem sg:pub.10.1007/s00234-020-02575-w
    173 rdf:type schema:MonetaryGrant
    174 sg:journal.1055404 schema:issn 0028-3940
    175 1432-1920
    176 schema:name Neuroradiology
    177 schema:publisher Springer Nature
    178 rdf:type schema:Periodical
    179 sg:person.010005244404.21 schema:affiliation grid-institutes:grid.50956.3f
    180 schema:familyName Xiao
    181 schema:givenName Jiayu
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005244404.21
    183 rdf:type schema:Person
    184 sg:person.01030026175.15 schema:affiliation grid-institutes:grid.411115.1
    185 schema:familyName Loevner
    186 schema:givenName Laurie A.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030026175.15
    188 rdf:type schema:Person
    189 sg:person.01136172260.58 schema:affiliation grid-institutes:grid.50956.3f
    190 schema:familyName Fan
    191 schema:givenName Zhaoyang
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136172260.58
    193 rdf:type schema:Person
    194 sg:person.012077351315.22 schema:affiliation grid-institutes:grid.411115.1
    195 schema:familyName Burke
    196 schema:givenName Morgan P.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077351315.22
    198 rdf:type schema:Person
    199 sg:person.01220320744.34 schema:affiliation grid-institutes:grid.411115.1
    200 schema:familyName Kasner
    201 schema:givenName Scott E.
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220320744.34
    203 rdf:type schema:Person
    204 sg:person.01263056704.62 schema:affiliation grid-institutes:grid.25879.31
    205 schema:familyName Shou
    206 schema:givenName Haochang
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263056704.62
    208 rdf:type schema:Person
    209 sg:person.01331452145.12 schema:affiliation grid-institutes:grid.411115.1
    210 schema:familyName Mankoff
    211 schema:givenName David
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331452145.12
    213 rdf:type schema:Person
    214 sg:person.01340002315.45 schema:affiliation grid-institutes:grid.411115.1
    215 schema:familyName Atsina
    216 schema:givenName Kofi-Buaku
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340002315.45
    218 rdf:type schema:Person
    219 sg:person.013450535552.37 schema:affiliation grid-institutes:grid.411115.1
    220 schema:familyName Song
    221 schema:givenName Jae W.
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013450535552.37
    223 rdf:type schema:Person
    224 sg:person.015437000575.82 schema:affiliation grid-institutes:grid.411115.1
    225 schema:familyName Pavlou
    226 schema:givenName Athanasios
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437000575.82
    228 rdf:type schema:Person
    229 sg:pub.10.1007/s00234-019-02167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111639462
    230 https://doi.org/10.1007/s00234-019-02167-3
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00234-019-02190-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112519634
    233 https://doi.org/10.1007/s00234-019-02190-4
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s00330-015-4008-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298470
    236 https://doi.org/10.1007/s00330-015-4008-5
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/s00330-018-5395-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103193323
    239 https://doi.org/10.1007/s00330-018-5395-1
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/s10554-013-0237-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012902178
    242 https://doi.org/10.1007/s10554-013-0237-3
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/s41598-019-55634-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123464349
    245 https://doi.org/10.1038/s41598-019-55634-5
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/s12883-016-0785-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011165819
    248 https://doi.org/10.1186/s12883-016-0785-y
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/s12883-018-1054-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103645378
    251 https://doi.org/10.1186/s12883-018-1054-z
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/s12968-018-0453-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104560508
    254 https://doi.org/10.1186/s12968-018-0453-z
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/s12968-018-0465-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104460760
    257 https://doi.org/10.1186/s12968-018-0465-8
    258 rdf:type schema:CreativeWork
    259 grid-institutes:grid.25879.31 schema:alternateName Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
    260 schema:name Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
    261 rdf:type schema:Organization
    262 grid-institutes:grid.411115.1 schema:alternateName Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
    263 Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
    264 schema:name Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
    265 Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 19104, Philadelphia, PA, USA
    266 rdf:type schema:Organization
    267 grid-institutes:grid.50956.3f schema:alternateName Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
    268 schema:name Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...