Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Jing-Li Li, Heng Jiang, Xiao-Dong Zhang, Li-Xiang Huang, Shuang-Shuang Xie, Li Zhang, Yue Cheng, Wen Shen

ABSTRACT

PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance. METHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n = 61) and MHE (n = 55), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE. RESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%). CONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis. More... »

PAGES

1-10

Journal

TITLE

Neuroradiology

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4

DOI

http://dx.doi.org/10.1007/s00234-019-02201-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113047232

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30918990


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jing-Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Oncology, Western Theater Command Air Force Hospital of PLA, 610021, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Heng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiao-Dong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Li-Xiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Shuang-Shuang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Transplantation Surgery, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Yue", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Wen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hep.24228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001813647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2013-306175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007418839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2015.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007851383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008507959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-016-9659-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011135900", 
          "https://doi.org/10.1007/s11682-016-9659-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-016-9659-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011135900", 
          "https://doi.org/10.1007/s11682-016-9659-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2012-303262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013639466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnana.2015.00082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020075185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020539935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021015472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0119339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022553539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11011-014-9505-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026156206", 
          "https://doi.org/10.1007/s11011-014-9505-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.21295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028714745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrgastro.2010.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030622128", 
          "https://doi.org/10.1038/nrgastro.2010.116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrgastro.2010.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030622128", 
          "https://doi.org/10.1038/nrgastro.2010.116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.04.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033011070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2963-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034303830", 
          "https://doi.org/10.1007/s00330-013-2963-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a4146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036069148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00062-015-0469-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036439503", 
          "https://doi.org/10.1007/s00062-015-0469-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043203481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043767929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044292335", 
          "https://doi.org/10.1038/nrn3587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra1600561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044894863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045703554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047608483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050472708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071105729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071105729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2017.18.2.370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083910387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085128065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085128065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4887-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090310416", 
          "https://doi.org/10.1007/s00330-017-4887-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4887-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090310416", 
          "https://doi.org/10.1007/s00330-017-4887-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-017-1881-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090671486", 
          "https://doi.org/10.1007/s00234-017-1881-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-017-1881-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090671486", 
          "https://doi.org/10.1007/s00234-017-1881-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.17827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091246562"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance.\nMETHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n\u2009=\u200961) and MHE (n\u2009=\u200955), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE.\nRESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%).\nCONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00234-019-02201-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bbf8e92f65f26f3105dd1c2f1d6619534de6334915d4e6134ebb357e6ed25eb7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30918990"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1302751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-019-02201-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113047232"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-019-02201-4", 
      "https://app.dimensions.ai/details/publication/pub.1113047232"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00234-019-02201-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      56 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-019-02201-4 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nda6bed07f27c4b27aee31350d1459afb
4 schema:citation sg:pub.10.1007/s00062-015-0469-9
5 sg:pub.10.1007/s00234-017-1881-4
6 sg:pub.10.1007/s00330-013-2963-2
7 sg:pub.10.1007/s00330-017-4887-8
8 sg:pub.10.1007/s11011-014-9505-8
9 sg:pub.10.1007/s11682-016-9659-6
10 sg:pub.10.1038/nrgastro.2010.116
11 sg:pub.10.1038/nrn3587
12 https://doi.org/10.1002/hbm.21295
13 https://doi.org/10.1002/hbm.23628
14 https://doi.org/10.1002/hep.24228
15 https://doi.org/10.1002/jmri.21342
16 https://doi.org/10.1016/j.ejrad.2012.07.003
17 https://doi.org/10.1016/j.ejrad.2012.12.016
18 https://doi.org/10.1016/j.ejrad.2015.08.005
19 https://doi.org/10.1016/j.jhep.2010.12.008
20 https://doi.org/10.1016/j.neuroimage.2010.04.260
21 https://doi.org/10.1016/j.nicl.2014.12.008
22 https://doi.org/10.1056/nejmra1600561
23 https://doi.org/10.1136/gutjnl-2012-303262
24 https://doi.org/10.1136/gutjnl-2013-306175
25 https://doi.org/10.1148/radiol.12111429
26 https://doi.org/10.1148/radiol.12120026
27 https://doi.org/10.1148/radiol.12120185
28 https://doi.org/10.1371/journal.pone.0119339
29 https://doi.org/10.2214/ajr.17.17827
30 https://doi.org/10.3174/ajnr.a4146
31 https://doi.org/10.3174/ajnr.a5042
32 https://doi.org/10.3348/kjr.2017.18.2.370
33 https://doi.org/10.3389/fnana.2015.00082
34 schema:datePublished 2019-03-27
35 schema:datePublishedReg 2019-03-27
36 schema:description PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance. METHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n = 61) and MHE (n = 55), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE. RESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%). CONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1055404
41 schema:name Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study
42 schema:pagination 1-10
43 schema:productId N1c605a31e48a4744ad23e93502faefb5
44 N30bed1c8e8fc405bb4234f76930d49aa
45 N318bd170781b4bee9e1a890e35a332a8
46 Nda2062e4748b43a881acf41ddfba52b5
47 Ne86d78b6561c49d9ac2b360fd7f11a35
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113047232
49 https://doi.org/10.1007/s00234-019-02201-4
50 schema:sdDatePublished 2019-04-11T13:19
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nbd29c3d4dfad480796b43aa5195d053f
53 schema:url https://link.springer.com/10.1007%2Fs00234-019-02201-4
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N071f7ee00d204f77ae2823ab6a82c96c schema:affiliation https://www.grid.ac/institutes/grid.417024.4
58 schema:familyName Huang
59 schema:givenName Li-Xiang
60 rdf:type schema:Person
61 N0b2973303cb64b42b49bd9e9814ee482 schema:affiliation Nd9b9bd125141400a8a4f8c69801139e2
62 schema:familyName Jiang
63 schema:givenName Heng
64 rdf:type schema:Person
65 N0e39e36ab6f54b8e8f5f0bd5e7e6fd22 rdf:first N071f7ee00d204f77ae2823ab6a82c96c
66 rdf:rest N1fd1d466aaea4e5987c05b7029bfbff7
67 N10b95313434c4c94a4644f4d4d88ad08 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
68 schema:familyName Cheng
69 schema:givenName Yue
70 rdf:type schema:Person
71 N1c605a31e48a4744ad23e93502faefb5 schema:name dimensions_id
72 schema:value pub.1113047232
73 rdf:type schema:PropertyValue
74 N1fd1d466aaea4e5987c05b7029bfbff7 rdf:first Nb805e7f86e034273833bbe390c547b7e
75 rdf:rest N3f2ccafee7a54c00b8fb1e4fdca7bcc6
76 N2119f744ea594d988649403e9eb70ed9 rdf:first N8dc16ef520724b8890a7575dbcc91326
77 rdf:rest rdf:nil
78 N256e1a3652244a3284ff7e1a8f6a9461 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
79 schema:familyName Li
80 schema:givenName Jing-Li
81 rdf:type schema:Person
82 N30bed1c8e8fc405bb4234f76930d49aa schema:name readcube_id
83 schema:value bbf8e92f65f26f3105dd1c2f1d6619534de6334915d4e6134ebb357e6ed25eb7
84 rdf:type schema:PropertyValue
85 N30d3f6335992400ea7e5c71faece94a2 rdf:first N10b95313434c4c94a4644f4d4d88ad08
86 rdf:rest N2119f744ea594d988649403e9eb70ed9
87 N318bd170781b4bee9e1a890e35a332a8 schema:name nlm_unique_id
88 schema:value 1302751
89 rdf:type schema:PropertyValue
90 N3440e761939649f9998be6e5d6bb81d5 rdf:first Ndd67b63a450c4ff0bee0d28045d68ae1
91 rdf:rest N0e39e36ab6f54b8e8f5f0bd5e7e6fd22
92 N3f2ccafee7a54c00b8fb1e4fdca7bcc6 rdf:first N815103fa8ea54565a4c7e0e7af719851
93 rdf:rest N30d3f6335992400ea7e5c71faece94a2
94 N60cd740830b44fe78dc4eb84b840512c rdf:first N0b2973303cb64b42b49bd9e9814ee482
95 rdf:rest N3440e761939649f9998be6e5d6bb81d5
96 N815103fa8ea54565a4c7e0e7af719851 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
97 schema:familyName Zhang
98 schema:givenName Li
99 rdf:type schema:Person
100 N8dc16ef520724b8890a7575dbcc91326 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
101 schema:familyName Shen
102 schema:givenName Wen
103 rdf:type schema:Person
104 Nb805e7f86e034273833bbe390c547b7e schema:affiliation https://www.grid.ac/institutes/grid.417024.4
105 schema:familyName Xie
106 schema:givenName Shuang-Shuang
107 rdf:type schema:Person
108 Nbd29c3d4dfad480796b43aa5195d053f schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nd9b9bd125141400a8a4f8c69801139e2 schema:name Department of Oncology, Western Theater Command Air Force Hospital of PLA, 610021, Chengdu, China
111 rdf:type schema:Organization
112 Nda2062e4748b43a881acf41ddfba52b5 schema:name doi
113 schema:value 10.1007/s00234-019-02201-4
114 rdf:type schema:PropertyValue
115 Nda6bed07f27c4b27aee31350d1459afb rdf:first N256e1a3652244a3284ff7e1a8f6a9461
116 rdf:rest N60cd740830b44fe78dc4eb84b840512c
117 Ndd67b63a450c4ff0bee0d28045d68ae1 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
118 schema:familyName Zhang
119 schema:givenName Xiao-Dong
120 rdf:type schema:Person
121 Ne86d78b6561c49d9ac2b360fd7f11a35 schema:name pubmed_id
122 schema:value 30918990
123 rdf:type schema:PropertyValue
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
128 schema:name Neurosciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1055404 schema:issn 0028-3940
131 1432-1920
132 schema:name Neuroradiology
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s00062-015-0469-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036439503
135 https://doi.org/10.1007/s00062-015-0469-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00234-017-1881-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090671486
138 https://doi.org/10.1007/s00234-017-1881-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00330-013-2963-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034303830
141 https://doi.org/10.1007/s00330-013-2963-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00330-017-4887-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090310416
144 https://doi.org/10.1007/s00330-017-4887-8
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11011-014-9505-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026156206
147 https://doi.org/10.1007/s11011-014-9505-8
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11682-016-9659-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011135900
150 https://doi.org/10.1007/s11682-016-9659-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nrgastro.2010.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030622128
153 https://doi.org/10.1038/nrgastro.2010.116
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nrn3587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044292335
156 https://doi.org/10.1038/nrn3587
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/hbm.21295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028714745
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/hbm.23628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085128065
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/hep.24228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001813647
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/jmri.21342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043767929
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ejrad.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047608483
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ejrad.2012.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020539935
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ejrad.2015.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007851383
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jhep.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043203481
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.neuroimage.2010.04.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011070
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.nicl.2014.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050472708
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1056/nejmra1600561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044894863
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1136/gutjnl-2012-303262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013639466
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1136/gutjnl-2013-306175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007418839
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.12111429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045703554
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1148/radiol.12120026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021015472
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1148/radiol.12120185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008507959
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pone.0119339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022553539
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2214/ajr.17.17827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091246562
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3174/ajnr.a4146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036069148
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3174/ajnr.a5042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071105729
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3348/kjr.2017.18.2.370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083910387
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3389/fnana.2015.00082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020075185
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.417024.4 schema:alternateName Tianjin First Center Hospital
203 schema:name Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China
204 Department of Transplantation Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...