Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Jing-Li Li, Heng Jiang, Xiao-Dong Zhang, Li-Xiang Huang, Shuang-Shuang Xie, Li Zhang, Yue Cheng, Wen Shen

ABSTRACT

PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance. METHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n = 61) and MHE (n = 55), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE. RESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%). CONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis. More... »

PAGES

1-10

Journal

TITLE

Neuroradiology

ISSUE

N/A

VOLUME

N/A

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4

DOI

http://dx.doi.org/10.1007/s00234-019-02201-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113047232

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30918990


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jing-Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Oncology, Western Theater Command Air Force Hospital of PLA, 610021, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Heng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiao-Dong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Li-Xiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Shuang-Shuang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Transplantation Surgery, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Yue", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin First Center Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417024.4", 
          "name": [
            "Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Wen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/hep.24228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001813647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2013-306175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007418839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2015.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007851383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008507959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-016-9659-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011135900", 
          "https://doi.org/10.1007/s11682-016-9659-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-016-9659-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011135900", 
          "https://doi.org/10.1007/s11682-016-9659-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2012-303262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013639466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnana.2015.00082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020075185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020539935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021015472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0119339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022553539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11011-014-9505-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026156206", 
          "https://doi.org/10.1007/s11011-014-9505-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.21295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028714745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrgastro.2010.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030622128", 
          "https://doi.org/10.1038/nrgastro.2010.116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrgastro.2010.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030622128", 
          "https://doi.org/10.1038/nrgastro.2010.116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.04.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033011070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2963-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034303830", 
          "https://doi.org/10.1007/s00330-013-2963-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a4146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036069148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00062-015-0469-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036439503", 
          "https://doi.org/10.1007/s00062-015-0469-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043203481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043767929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044292335", 
          "https://doi.org/10.1038/nrn3587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra1600561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044894863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045703554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047608483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050472708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071105729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071105729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2017.18.2.370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083910387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085128065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085128065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4887-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090310416", 
          "https://doi.org/10.1007/s00330-017-4887-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4887-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090310416", 
          "https://doi.org/10.1007/s00330-017-4887-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-017-1881-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090671486", 
          "https://doi.org/10.1007/s00234-017-1881-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-017-1881-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090671486", 
          "https://doi.org/10.1007/s00234-017-1881-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.17.17827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091246562"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance.\nMETHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n\u2009=\u200961) and MHE (n\u2009=\u200955), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE.\nRESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%).\nCONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00234-019-02201-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bbf8e92f65f26f3105dd1c2f1d6619534de6334915d4e6134ebb357e6ed25eb7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30918990"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1302751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-019-02201-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113047232"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-019-02201-4", 
      "https://app.dimensions.ai/details/publication/pub.1113047232"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00234-019-02201-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02201-4'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      56 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-019-02201-4 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N3d14c072526b438bb2d512452236fc64
4 schema:citation sg:pub.10.1007/s00062-015-0469-9
5 sg:pub.10.1007/s00234-017-1881-4
6 sg:pub.10.1007/s00330-013-2963-2
7 sg:pub.10.1007/s00330-017-4887-8
8 sg:pub.10.1007/s11011-014-9505-8
9 sg:pub.10.1007/s11682-016-9659-6
10 sg:pub.10.1038/nrgastro.2010.116
11 sg:pub.10.1038/nrn3587
12 https://doi.org/10.1002/hbm.21295
13 https://doi.org/10.1002/hbm.23628
14 https://doi.org/10.1002/hep.24228
15 https://doi.org/10.1002/jmri.21342
16 https://doi.org/10.1016/j.ejrad.2012.07.003
17 https://doi.org/10.1016/j.ejrad.2012.12.016
18 https://doi.org/10.1016/j.ejrad.2015.08.005
19 https://doi.org/10.1016/j.jhep.2010.12.008
20 https://doi.org/10.1016/j.neuroimage.2010.04.260
21 https://doi.org/10.1016/j.nicl.2014.12.008
22 https://doi.org/10.1056/nejmra1600561
23 https://doi.org/10.1136/gutjnl-2012-303262
24 https://doi.org/10.1136/gutjnl-2013-306175
25 https://doi.org/10.1148/radiol.12111429
26 https://doi.org/10.1148/radiol.12120026
27 https://doi.org/10.1148/radiol.12120185
28 https://doi.org/10.1371/journal.pone.0119339
29 https://doi.org/10.2214/ajr.17.17827
30 https://doi.org/10.3174/ajnr.a4146
31 https://doi.org/10.3174/ajnr.a5042
32 https://doi.org/10.3348/kjr.2017.18.2.370
33 https://doi.org/10.3389/fnana.2015.00082
34 schema:datePublished 2019-03-27
35 schema:datePublishedReg 2019-03-27
36 schema:description PURPOSE: To investigate the diffusion kurtosis imaging (DKI) in early minimal hepatic encephalopathy (MHE) diagnosis and evaluate the correlations between changes in DKI metrics and cognitive performance. METHODS: We enrolled 116 cirrhosis patients, divided into non-HE (n = 61) and MHE (n = 55), and 46 normal controls (NCs). All patients underwent cognitive testing before magnetic resonance imaging. DKI metrics were calculated through whole-brain voxel-based analysis (VBA) and differences between the groups were assessed. Pearson correlation between the DKI metrics and cognitive performance was analysed. The receiver operating characteristic (ROC) curve was used to analyse the diagnostic efficiency of DKI metrics for MHE. RESULTS: MHE patients had significantly altered DKI metrics in a wide range of regions; lower fractional anisotropy (FA) and higher mean diffusivity (MD) are mainly located in the corpus callosum, left temporal white matter (WM), and right medial frontal WM. Furthermore, significantly altered kurtosis metrics included lower mean kurtosis (MK) in the corpus callosum and left thalamus, lower radial kurtosis (RK) in the corpus callosum, and lower axial kurtosis (AK) in the right anterior thalamic radiation. Alterations in axial diffusivity (AD), radial diffusivity (RD), and MD were closely correlated with cognitive scores. The ROC curves indicated AD in the forceps minor had the highest predictive performance for MHE in the cirrhosis patients (area under curve = 0.801, sensitivity = 77.05%, specificity = 74.55%). CONCLUSIONS: Altered DKI metrics indicate brain microstructure abnormalities in MHE patients, some of which may be used as neuroimaging markers for early MHE diagnosis.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1055404
41 schema:name Microstructural brain abnormalities correlate with neurocognitive dysfunction in minimal hepatic encephalopathy: a diffusion kurtosis imaging study
42 schema:pagination 1-10
43 schema:productId N27ef943905104a259b1d5939ae9215a0
44 N4e1b629cbb0544c98fd019018287dd30
45 N52f6dfcd46524ac0b3577d12013967be
46 N9176b155e5d94a15b3453466fdb043da
47 N9904c696323646f391319e0c5cfe88b8
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113047232
49 https://doi.org/10.1007/s00234-019-02201-4
50 schema:sdDatePublished 2019-04-11T13:19
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N18e14e801f0d44e98935b3463b0fa064
53 schema:url https://link.springer.com/10.1007%2Fs00234-019-02201-4
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N067f866a0710487abf30b971a1cb8af1 rdf:first N2dcc1b92296d4993ba5ba4a66226678b
58 rdf:rest rdf:nil
59 N18e14e801f0d44e98935b3463b0fa064 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N27ef943905104a259b1d5939ae9215a0 schema:name readcube_id
62 schema:value bbf8e92f65f26f3105dd1c2f1d6619534de6334915d4e6134ebb357e6ed25eb7
63 rdf:type schema:PropertyValue
64 N2dcc1b92296d4993ba5ba4a66226678b schema:affiliation https://www.grid.ac/institutes/grid.417024.4
65 schema:familyName Shen
66 schema:givenName Wen
67 rdf:type schema:Person
68 N2f741e1d7e0b425489c32e60c814cdef schema:name Department of Oncology, Western Theater Command Air Force Hospital of PLA, 610021, Chengdu, China
69 rdf:type schema:Organization
70 N3895540e2d374980a98d68856d69b54e rdf:first N4e4bd3252403481098a9735d9493736f
71 rdf:rest N7ee0e21f41394f3487d7e2ca85f42a83
72 N3d14c072526b438bb2d512452236fc64 rdf:first N7fb2502329af45c48972c7f728728f8c
73 rdf:rest Nf3f1cb98de5f46ee838a63fe8ee65234
74 N421d15800d904036a6e1f8e04b6f8782 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
75 schema:familyName Huang
76 schema:givenName Li-Xiang
77 rdf:type schema:Person
78 N4e1b629cbb0544c98fd019018287dd30 schema:name pubmed_id
79 schema:value 30918990
80 rdf:type schema:PropertyValue
81 N4e4bd3252403481098a9735d9493736f schema:affiliation https://www.grid.ac/institutes/grid.417024.4
82 schema:familyName Zhang
83 schema:givenName Xiao-Dong
84 rdf:type schema:Person
85 N52f6dfcd46524ac0b3577d12013967be schema:name nlm_unique_id
86 schema:value 1302751
87 rdf:type schema:PropertyValue
88 N5ca8f310f5ff400bb97ea5a7991da74b schema:affiliation https://www.grid.ac/institutes/grid.417024.4
89 schema:familyName Cheng
90 schema:givenName Yue
91 rdf:type schema:Person
92 N6a81386bc0504ca4842b3284e2996c28 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
93 schema:familyName Zhang
94 schema:givenName Li
95 rdf:type schema:Person
96 N7159f8d7c0884c51a12c462c38cbed35 rdf:first N6a81386bc0504ca4842b3284e2996c28
97 rdf:rest Nff6fe761739b493b8bdce5148dffe02b
98 N7ee0e21f41394f3487d7e2ca85f42a83 rdf:first N421d15800d904036a6e1f8e04b6f8782
99 rdf:rest Nd35fd56607f7428db4071a25f06acaf8
100 N7fb2502329af45c48972c7f728728f8c schema:affiliation https://www.grid.ac/institutes/grid.417024.4
101 schema:familyName Li
102 schema:givenName Jing-Li
103 rdf:type schema:Person
104 N9176b155e5d94a15b3453466fdb043da schema:name doi
105 schema:value 10.1007/s00234-019-02201-4
106 rdf:type schema:PropertyValue
107 N9904c696323646f391319e0c5cfe88b8 schema:name dimensions_id
108 schema:value pub.1113047232
109 rdf:type schema:PropertyValue
110 Nb5cbb8a1d5a942d2ac5e50593f271e14 schema:affiliation https://www.grid.ac/institutes/grid.417024.4
111 schema:familyName Xie
112 schema:givenName Shuang-Shuang
113 rdf:type schema:Person
114 Nd35fd56607f7428db4071a25f06acaf8 rdf:first Nb5cbb8a1d5a942d2ac5e50593f271e14
115 rdf:rest N7159f8d7c0884c51a12c462c38cbed35
116 Ne8564c829187486eb229f62dd3d36eba schema:affiliation N2f741e1d7e0b425489c32e60c814cdef
117 schema:familyName Jiang
118 schema:givenName Heng
119 rdf:type schema:Person
120 Nf3f1cb98de5f46ee838a63fe8ee65234 rdf:first Ne8564c829187486eb229f62dd3d36eba
121 rdf:rest N3895540e2d374980a98d68856d69b54e
122 Nff6fe761739b493b8bdce5148dffe02b rdf:first N5ca8f310f5ff400bb97ea5a7991da74b
123 rdf:rest N067f866a0710487abf30b971a1cb8af1
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
128 schema:name Neurosciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1055404 schema:issn 0028-3940
131 1432-1920
132 schema:name Neuroradiology
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s00062-015-0469-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036439503
135 https://doi.org/10.1007/s00062-015-0469-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00234-017-1881-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090671486
138 https://doi.org/10.1007/s00234-017-1881-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00330-013-2963-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034303830
141 https://doi.org/10.1007/s00330-013-2963-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00330-017-4887-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090310416
144 https://doi.org/10.1007/s00330-017-4887-8
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11011-014-9505-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026156206
147 https://doi.org/10.1007/s11011-014-9505-8
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11682-016-9659-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011135900
150 https://doi.org/10.1007/s11682-016-9659-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nrgastro.2010.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030622128
153 https://doi.org/10.1038/nrgastro.2010.116
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nrn3587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044292335
156 https://doi.org/10.1038/nrn3587
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/hbm.21295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028714745
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/hbm.23628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085128065
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/hep.24228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001813647
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/jmri.21342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043767929
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ejrad.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047608483
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ejrad.2012.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020539935
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ejrad.2015.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007851383
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jhep.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043203481
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.neuroimage.2010.04.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011070
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.nicl.2014.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050472708
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1056/nejmra1600561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044894863
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1136/gutjnl-2012-303262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013639466
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1136/gutjnl-2013-306175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007418839
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.12111429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045703554
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1148/radiol.12120026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021015472
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1148/radiol.12120185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008507959
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pone.0119339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022553539
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2214/ajr.17.17827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091246562
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3174/ajnr.a4146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036069148
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3174/ajnr.a5042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071105729
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3348/kjr.2017.18.2.370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083910387
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3389/fnana.2015.00082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020075185
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.417024.4 schema:alternateName Tianjin First Center Hospital
203 schema:name Department of Radiology, Tianjin First Central Hospital, 300192, Tianjin, China
204 Department of Transplantation Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...