Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-04

AUTHORS

Shai Shrot, Moshe Salhov, Nir Dvorski, Eli Konen, Amir Averbuch, Chen Hoffmann

ABSTRACT

PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this study was to apply a machine learning scheme using basic and advanced MR sequences for distinguishing different types of brain tumors. METHODS: The study cohort included 141 patients (41 glioblastoma, 38 metastasis, 50 meningioma, and 12 primary central nervous system lymphoma). A computer-assisted classification scheme, combining morphologic MRI, perfusion MRI, and DTI metrics, was developed and used for tumor classification. The proposed multistep scheme consists of pre-processing, ROI definition, features extraction, feature selection, and classification. Feature subset selection was performed using support vector machines (SVMs). Classification performance was assessed by leave-one-out cross-validation. Given an ROI, the entire classification process was done automatically via computer and without any human intervention. RESULTS: A binary hierarchical classification tree was chosen. In the first step, selected features were chosen for distinguishing glioblastoma from the remaining three classes, followed by separation of meningioma from metastasis and PCNSL, and then to discriminate PCNSL from metastasis. The binary SVM classification accuracy, sensitivity and specificity for glioblastoma, metastasis, meningiomas, and primary central nervous system lymphoma were 95.7, 81.6, and 91.2%; 92.7, 95.1, and 93.6%; 97, 90.8, and 58.3%; and 91.5, 90, and 96.9%, respectively. CONCLUSION: A machine learning scheme using data from anatomical and advanced MRI sequences resulted in high-performance automatic tumor classification algorithm. Such a scheme can be integrated into clinical decision support systems to optimize tumor classification. More... »

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z

DOI

http://dx.doi.org/10.1007/s00234-019-02195-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113185162

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30949746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel. Shai.Shrot@Sheba.health.gov.il.", 
            "Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. Shai.Shrot@Sheba.health.gov.il."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shrot", 
        "givenName": "Shai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, Tel Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salhov", 
        "givenName": "Moshe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, Tel Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dvorski", 
        "givenName": "Nir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel.", 
            "Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konen", 
        "givenName": "Eli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, Tel Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Averbuch", 
        "givenName": "Amir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel.", 
            "Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffmann", 
        "givenName": "Chen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cmpb.2007.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000596072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14791/btrt.2015.3.1.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002008685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005374928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surneu.2007.07.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2013.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009092395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-006-0115-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020572891", 
          "https://doi.org/10.1007/s00234-006-0115-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-006-0115-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020572891", 
          "https://doi.org/10.1007/s00234-006-0115-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021591147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2012.0038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022009532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2223010558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025357471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026033385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-7071(02)00436-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032463617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032565080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-012-0808-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033455236", 
          "https://doi.org/10.1007/s11548-012-0808-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clineuro.2004.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047100825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-011-0559-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049297681", 
          "https://doi.org/10.1007/s11548-011-0559-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318261e913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318261e913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2015.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051837064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051852546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053241342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.668698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2012.2185807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v6.i4.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075147704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077206466", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077859208", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1470-7330-14-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079033214", 
          "https://doi.org/10.1186/1470-7330-14-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcij.2017.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099931549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2018.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104602861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2018.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104602861"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-04", 
    "datePublishedReg": "2019-04-04", 
    "description": "PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this study was to apply a machine learning scheme using basic and advanced MR sequences for distinguishing different types of brain tumors.\nMETHODS: The study cohort included 141 patients (41 glioblastoma, 38 metastasis, 50 meningioma, and 12 primary central nervous system lymphoma). A computer-assisted classification scheme, combining morphologic MRI, perfusion MRI, and DTI metrics, was developed and used for tumor classification. The proposed multistep scheme consists of pre-processing, ROI definition, features extraction, feature selection, and classification. Feature subset selection was performed using support vector machines (SVMs). Classification performance was assessed by leave-one-out cross-validation. Given an ROI, the entire classification process was done automatically via computer and without any human intervention.\nRESULTS: A binary hierarchical classification tree was chosen. In the first step, selected features were chosen for distinguishing glioblastoma from the remaining three classes, followed by separation of meningioma from metastasis and PCNSL, and then to discriminate PCNSL from metastasis. The binary SVM classification accuracy, sensitivity and specificity for glioblastoma, metastasis, meningiomas, and primary central nervous system lymphoma were 95.7, 81.6, and 91.2%; 92.7, 95.1, and 93.6%; 97, 90.8, and 58.3%; and 91.5, 90, and 96.9%, respectively.\nCONCLUSION: A machine learning scheme using data from anatomical and advanced MRI sequences resulted in high-performance automatic tumor classification algorithm. Such a scheme can be integrated into clinical decision support systems to optimize tumor classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00234-019-02195-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30949746"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1302751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-019-02195-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113185162"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-019-02195-z", 
      "https://app.dimensions.ai/details/publication/pub.1113185162"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117125_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00234-019-02195-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      20 PREDICATES      57 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-019-02195-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0b063bffb50e4683a604c16682b03707
4 schema:citation sg:pub.10.1007/978-0-387-84858-7
5 sg:pub.10.1007/s00234-006-0115-y
6 sg:pub.10.1007/s11548-011-0559-3
7 sg:pub.10.1007/s11548-012-0808-0
8 sg:pub.10.1186/1470-7330-14-20
9 https://app.dimensions.ai/details/publication/pub.1032573094
10 https://app.dimensions.ai/details/publication/pub.1075147704
11 https://app.dimensions.ai/details/publication/pub.1077206466
12 https://app.dimensions.ai/details/publication/pub.1077859208
13 https://doi.org/10.1002/jmri.1076
14 https://doi.org/10.1002/mrm.22147
15 https://doi.org/10.1002/nbm.3163
16 https://doi.org/10.1016/j.clineuro.2004.06.011
17 https://doi.org/10.1016/j.cmpb.2007.10.007
18 https://doi.org/10.1016/j.compbiomed.2018.06.009
19 https://doi.org/10.1016/j.ejmp.2015.03.010
20 https://doi.org/10.1016/j.ejrad.2010.07.017
21 https://doi.org/10.1016/j.fcij.2017.12.001
22 https://doi.org/10.1016/j.mri.2008.05.017
23 https://doi.org/10.1016/j.mri.2010.11.006
24 https://doi.org/10.1016/j.mri.2013.06.010
25 https://doi.org/10.1016/j.neuroimage.2008.09.027
26 https://doi.org/10.1016/j.nicl.2014.08.001
27 https://doi.org/10.1016/j.surneu.2007.07.080
28 https://doi.org/10.1016/s0899-7071(02)00436-9
29 https://doi.org/10.1097/rct.0b013e318261e913
30 https://doi.org/10.1102/1470-7330.2012.0038
31 https://doi.org/10.1109/42.668698
32 https://doi.org/10.1109/titb.2012.2185807
33 https://doi.org/10.1148/radiol.2223010558
34 https://doi.org/10.14791/btrt.2015.3.1.8
35 https://doi.org/10.3174/ajnr.a2333
36 https://doi.org/10.4329/wjr.v6.i4.72
37 schema:datePublished 2019-04-04
38 schema:datePublishedReg 2019-04-04
39 schema:description PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this study was to apply a machine learning scheme using basic and advanced MR sequences for distinguishing different types of brain tumors. METHODS: The study cohort included 141 patients (41 glioblastoma, 38 metastasis, 50 meningioma, and 12 primary central nervous system lymphoma). A computer-assisted classification scheme, combining morphologic MRI, perfusion MRI, and DTI metrics, was developed and used for tumor classification. The proposed multistep scheme consists of pre-processing, ROI definition, features extraction, feature selection, and classification. Feature subset selection was performed using support vector machines (SVMs). Classification performance was assessed by leave-one-out cross-validation. Given an ROI, the entire classification process was done automatically via computer and without any human intervention. RESULTS: A binary hierarchical classification tree was chosen. In the first step, selected features were chosen for distinguishing glioblastoma from the remaining three classes, followed by separation of meningioma from metastasis and PCNSL, and then to discriminate PCNSL from metastasis. The binary SVM classification accuracy, sensitivity and specificity for glioblastoma, metastasis, meningiomas, and primary central nervous system lymphoma were 95.7, 81.6, and 91.2%; 92.7, 95.1, and 93.6%; 97, 90.8, and 58.3%; and 91.5, 90, and 96.9%, respectively. CONCLUSION: A machine learning scheme using data from anatomical and advanced MRI sequences resulted in high-performance automatic tumor classification algorithm. Such a scheme can be integrated into clinical decision support systems to optimize tumor classification.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1055404
44 schema:name Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.
45 schema:productId N561ca58383fc4c7182c88ace3bab302f
46 N5c7348716ba64b54b1863ef96d3a19f4
47 N9161204268ce49a1a471ad0aeaa9b88c
48 Na36cb5c40767432ea73209b2d5143da8
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113185162
50 https://doi.org/10.1007/s00234-019-02195-z
51 schema:sdDatePublished 2019-04-11T14:21
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N53c7cb38adb04eb583a509a6e468febc
54 schema:url http://link.springer.com/10.1007/s00234-019-02195-z
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N09d56c26ca874f82a6a14c7d65d22de3 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
59 schema:familyName Konen
60 schema:givenName Eli
61 rdf:type schema:Person
62 N0b063bffb50e4683a604c16682b03707 rdf:first Nc6e5315fe917455b85a35cdae670a4b8
63 rdf:rest N6534f7fd73444aaa879e1019f3d4b409
64 N1382c7a1fae6444d930f573c6fb47506 rdf:first N86c69dcccde1426494cd09f6cdae367e
65 rdf:rest rdf:nil
66 N53c7cb38adb04eb583a509a6e468febc schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N561ca58383fc4c7182c88ace3bab302f schema:name dimensions_id
69 schema:value pub.1113185162
70 rdf:type schema:PropertyValue
71 N5c7348716ba64b54b1863ef96d3a19f4 schema:name nlm_unique_id
72 schema:value 1302751
73 rdf:type schema:PropertyValue
74 N6298800f236d49eda3df881907c1d071 rdf:first N09d56c26ca874f82a6a14c7d65d22de3
75 rdf:rest Nf30e48e5f421410989e7d14a6519981d
76 N6534f7fd73444aaa879e1019f3d4b409 rdf:first Nb8d4111cf2c747a780c300cfeef99819
77 rdf:rest N73fd57a5e155449bab1e19decf7529ce
78 N73fd57a5e155449bab1e19decf7529ce rdf:first N9c212115d2f4422d9fc98d1aeafe065f
79 rdf:rest N6298800f236d49eda3df881907c1d071
80 N8009d0a47ebe4bdd9096aaf0373c9043 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
81 schema:familyName Averbuch
82 schema:givenName Amir
83 rdf:type schema:Person
84 N86c69dcccde1426494cd09f6cdae367e schema:affiliation https://www.grid.ac/institutes/grid.12136.37
85 schema:familyName Hoffmann
86 schema:givenName Chen
87 rdf:type schema:Person
88 N9161204268ce49a1a471ad0aeaa9b88c schema:name doi
89 schema:value 10.1007/s00234-019-02195-z
90 rdf:type schema:PropertyValue
91 N9c212115d2f4422d9fc98d1aeafe065f schema:affiliation https://www.grid.ac/institutes/grid.12136.37
92 schema:familyName Dvorski
93 schema:givenName Nir
94 rdf:type schema:Person
95 Na36cb5c40767432ea73209b2d5143da8 schema:name pubmed_id
96 schema:value 30949746
97 rdf:type schema:PropertyValue
98 Nb8d4111cf2c747a780c300cfeef99819 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
99 schema:familyName Salhov
100 schema:givenName Moshe
101 rdf:type schema:Person
102 Nc6e5315fe917455b85a35cdae670a4b8 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
103 schema:familyName Shrot
104 schema:givenName Shai
105 rdf:type schema:Person
106 Nf30e48e5f421410989e7d14a6519981d rdf:first N8009d0a47ebe4bdd9096aaf0373c9043
107 rdf:rest N1382c7a1fae6444d930f573c6fb47506
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 sg:journal.1055404 schema:issn 0028-3940
115 1432-1920
116 schema:name Neuroradiology
117 rdf:type schema:Periodical
118 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
119 https://doi.org/10.1007/978-0-387-84858-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00234-006-0115-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020572891
122 https://doi.org/10.1007/s00234-006-0115-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11548-011-0559-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049297681
125 https://doi.org/10.1007/s11548-011-0559-3
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11548-012-0808-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033455236
128 https://doi.org/10.1007/s11548-012-0808-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1470-7330-14-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079033214
131 https://doi.org/10.1186/1470-7330-14-20
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1075147704 schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1077206466 schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1077859208 schema:CreativeWork
137 https://doi.org/10.1002/jmri.1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053241342
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/mrm.22147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027450786
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/nbm.3163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879474
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.clineuro.2004.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047100825
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cmpb.2007.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000596072
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.compbiomed.2018.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104602861
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ejmp.2015.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051837064
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ejrad.2010.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026033385
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.fcij.2017.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099931549
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.mri.2008.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591147
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.mri.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869594
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.mri.2013.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092395
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neuroimage.2008.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051852546
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.nicl.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032565080
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.surneu.2007.07.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106304
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0899-7071(02)00436-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032463617
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1097/rct.0b013e318261e913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591623
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1102/1470-7330.2012.0038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022009532
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/42.668698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170625
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/titb.2012.2185807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657102
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1148/radiol.2223010558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025357471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.14791/btrt.2015.3.1.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002008685
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3174/ajnr.a2333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005374928
182 rdf:type schema:CreativeWork
183 https://doi.org/10.4329/wjr.v6.i4.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524784
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
186 schema:name Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel.
187 Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel. Shai.Shrot@Sheba.health.gov.il.
188 Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
189 Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. Shai.Shrot@Sheba.health.gov.il.
190 School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...