Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-04

AUTHORS

Shai Shrot, Moshe Salhov, Nir Dvorski, Eli Konen, Amir Averbuch, Chen Hoffmann

ABSTRACT

PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this study was to apply a machine learning scheme using basic and advanced MR sequences for distinguishing different types of brain tumors. METHODS: The study cohort included 141 patients (41 glioblastoma, 38 metastasis, 50 meningioma, and 12 primary central nervous system lymphoma). A computer-assisted classification scheme, combining morphologic MRI, perfusion MRI, and DTI metrics, was developed and used for tumor classification. The proposed multistep scheme consists of pre-processing, ROI definition, features extraction, feature selection, and classification. Feature subset selection was performed using support vector machines (SVMs). Classification performance was assessed by leave-one-out cross-validation. Given an ROI, the entire classification process was done automatically via computer and without any human intervention. RESULTS: A binary hierarchical classification tree was chosen. In the first step, selected features were chosen for distinguishing glioblastoma from the remaining three classes, followed by separation of meningioma from metastasis and PCNSL, and then to discriminate PCNSL from metastasis. The binary SVM classification accuracy, sensitivity and specificity for glioblastoma, metastasis, meningiomas, and primary central nervous system lymphoma were 95.7, 81.6, and 91.2%; 92.7, 95.1, and 93.6%; 97, 90.8, and 58.3%; and 91.5, 90, and 96.9%, respectively. CONCLUSION: A machine learning scheme using data from anatomical and advanced MRI sequences resulted in high-performance automatic tumor classification algorithm. Such a scheme can be integrated into clinical decision support systems to optimize tumor classification. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z

DOI

http://dx.doi.org/10.1007/s00234-019-02195-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113185162

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30949746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel. Shai.Shrot@Sheba.health.gov.il.", 
            "Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. Shai.Shrot@Sheba.health.gov.il."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shrot", 
        "givenName": "Shai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, Tel Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salhov", 
        "givenName": "Moshe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, Tel Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dvorski", 
        "givenName": "Nir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel.", 
            "Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konen", 
        "givenName": "Eli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "School of Computer Science, Tel Aviv University, Tel Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Averbuch", 
        "givenName": "Amir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel.", 
            "Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffmann", 
        "givenName": "Chen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cmpb.2007.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000596072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14791/btrt.2015.3.1.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002008685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005374928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.3163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surneu.2007.07.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008106304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2013.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009092395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-006-0115-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020572891", 
          "https://doi.org/10.1007/s00234-006-0115-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-006-0115-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020572891", 
          "https://doi.org/10.1007/s00234-006-0115-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2008.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021591147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2012.0038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022009532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2223010558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025357471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026033385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-7071(02)00436-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032463617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032565080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-012-0808-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033455236", 
          "https://doi.org/10.1007/s11548-012-0808-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clineuro.2004.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047100825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-011-0559-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049297681", 
          "https://doi.org/10.1007/s11548-011-0559-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318261e913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318261e913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051591623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2015.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051837064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051852546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053241342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.668698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2012.2185807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v6.i4.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075147704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077206466", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077859208", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1470-7330-14-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079033214", 
          "https://doi.org/10.1186/1470-7330-14-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcij.2017.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099931549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2018.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104602861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2018.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104602861"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-04", 
    "datePublishedReg": "2019-04-04", 
    "description": "PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this study was to apply a machine learning scheme using basic and advanced MR sequences for distinguishing different types of brain tumors.\nMETHODS: The study cohort included 141 patients (41 glioblastoma, 38 metastasis, 50 meningioma, and 12 primary central nervous system lymphoma). A computer-assisted classification scheme, combining morphologic MRI, perfusion MRI, and DTI metrics, was developed and used for tumor classification. The proposed multistep scheme consists of pre-processing, ROI definition, features extraction, feature selection, and classification. Feature subset selection was performed using support vector machines (SVMs). Classification performance was assessed by leave-one-out cross-validation. Given an ROI, the entire classification process was done automatically via computer and without any human intervention.\nRESULTS: A binary hierarchical classification tree was chosen. In the first step, selected features were chosen for distinguishing glioblastoma from the remaining three classes, followed by separation of meningioma from metastasis and PCNSL, and then to discriminate PCNSL from metastasis. The binary SVM classification accuracy, sensitivity and specificity for glioblastoma, metastasis, meningiomas, and primary central nervous system lymphoma were 95.7, 81.6, and 91.2%; 92.7, 95.1, and 93.6%; 97, 90.8, and 58.3%; and 91.5, 90, and 96.9%, respectively.\nCONCLUSION: A machine learning scheme using data from anatomical and advanced MRI sequences resulted in high-performance automatic tumor classification algorithm. Such a scheme can be integrated into clinical decision support systems to optimize tumor classification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00234-019-02195-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30949746"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1302751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-019-02195-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113185162"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-019-02195-z", 
      "https://app.dimensions.ai/details/publication/pub.1113185162"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117125_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00234-019-02195-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-019-02195-z'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      20 PREDICATES      57 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-019-02195-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7a0fe5b80d6c4f81b5c82582948a64f5
4 schema:citation sg:pub.10.1007/978-0-387-84858-7
5 sg:pub.10.1007/s00234-006-0115-y
6 sg:pub.10.1007/s11548-011-0559-3
7 sg:pub.10.1007/s11548-012-0808-0
8 sg:pub.10.1186/1470-7330-14-20
9 https://app.dimensions.ai/details/publication/pub.1032573094
10 https://app.dimensions.ai/details/publication/pub.1075147704
11 https://app.dimensions.ai/details/publication/pub.1077206466
12 https://app.dimensions.ai/details/publication/pub.1077859208
13 https://doi.org/10.1002/jmri.1076
14 https://doi.org/10.1002/mrm.22147
15 https://doi.org/10.1002/nbm.3163
16 https://doi.org/10.1016/j.clineuro.2004.06.011
17 https://doi.org/10.1016/j.cmpb.2007.10.007
18 https://doi.org/10.1016/j.compbiomed.2018.06.009
19 https://doi.org/10.1016/j.ejmp.2015.03.010
20 https://doi.org/10.1016/j.ejrad.2010.07.017
21 https://doi.org/10.1016/j.fcij.2017.12.001
22 https://doi.org/10.1016/j.mri.2008.05.017
23 https://doi.org/10.1016/j.mri.2010.11.006
24 https://doi.org/10.1016/j.mri.2013.06.010
25 https://doi.org/10.1016/j.neuroimage.2008.09.027
26 https://doi.org/10.1016/j.nicl.2014.08.001
27 https://doi.org/10.1016/j.surneu.2007.07.080
28 https://doi.org/10.1016/s0899-7071(02)00436-9
29 https://doi.org/10.1097/rct.0b013e318261e913
30 https://doi.org/10.1102/1470-7330.2012.0038
31 https://doi.org/10.1109/42.668698
32 https://doi.org/10.1109/titb.2012.2185807
33 https://doi.org/10.1148/radiol.2223010558
34 https://doi.org/10.14791/btrt.2015.3.1.8
35 https://doi.org/10.3174/ajnr.a2333
36 https://doi.org/10.4329/wjr.v6.i4.72
37 schema:datePublished 2019-04-04
38 schema:datePublishedReg 2019-04-04
39 schema:description PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this study was to apply a machine learning scheme using basic and advanced MR sequences for distinguishing different types of brain tumors. METHODS: The study cohort included 141 patients (41 glioblastoma, 38 metastasis, 50 meningioma, and 12 primary central nervous system lymphoma). A computer-assisted classification scheme, combining morphologic MRI, perfusion MRI, and DTI metrics, was developed and used for tumor classification. The proposed multistep scheme consists of pre-processing, ROI definition, features extraction, feature selection, and classification. Feature subset selection was performed using support vector machines (SVMs). Classification performance was assessed by leave-one-out cross-validation. Given an ROI, the entire classification process was done automatically via computer and without any human intervention. RESULTS: A binary hierarchical classification tree was chosen. In the first step, selected features were chosen for distinguishing glioblastoma from the remaining three classes, followed by separation of meningioma from metastasis and PCNSL, and then to discriminate PCNSL from metastasis. The binary SVM classification accuracy, sensitivity and specificity for glioblastoma, metastasis, meningiomas, and primary central nervous system lymphoma were 95.7, 81.6, and 91.2%; 92.7, 95.1, and 93.6%; 97, 90.8, and 58.3%; and 91.5, 90, and 96.9%, respectively. CONCLUSION: A machine learning scheme using data from anatomical and advanced MRI sequences resulted in high-performance automatic tumor classification algorithm. Such a scheme can be integrated into clinical decision support systems to optimize tumor classification.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1055404
44 schema:name Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.
45 schema:productId N0a4939de8edf4722b2e738a50219331b
46 N4c89cdc85d8b4ec2b16131d0bffe8975
47 N6f6879920d95471da670306cc42d1cf5
48 Nf2172f1fe0bf441486579f942df1d60c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113185162
50 https://doi.org/10.1007/s00234-019-02195-z
51 schema:sdDatePublished 2019-04-11T14:21
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nbe709ab90aa24532a87ecfbc80d098dd
54 schema:url http://link.springer.com/10.1007/s00234-019-02195-z
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0a4939de8edf4722b2e738a50219331b schema:name doi
59 schema:value 10.1007/s00234-019-02195-z
60 rdf:type schema:PropertyValue
61 N15cbbb321d084c979696dee7eb21b27d schema:affiliation https://www.grid.ac/institutes/grid.12136.37
62 schema:familyName Hoffmann
63 schema:givenName Chen
64 rdf:type schema:Person
65 N1ca4931e126f4e519e23e556a96ed7e8 rdf:first Nb26469bba6fb4d1db4b0b9292cc5dcd3
66 rdf:rest Na4a758cae23e4c458893aa6a9f4258e3
67 N2cbf1ac3abc54119856d9e0fe4b49056 rdf:first Nba0546bcfe984fe098133b52edd14e44
68 rdf:rest Ne77ccc5856ff4b4e8ea7de0d76804250
69 N407c83a7649a43be854931b174332209 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
70 schema:familyName Dvorski
71 schema:givenName Nir
72 rdf:type schema:Person
73 N4a6b43f348744a2bbcd8eef82120d79f rdf:first Nc06db19384464b028d71850f18ec639f
74 rdf:rest N1ca4931e126f4e519e23e556a96ed7e8
75 N4c89cdc85d8b4ec2b16131d0bffe8975 schema:name dimensions_id
76 schema:value pub.1113185162
77 rdf:type schema:PropertyValue
78 N6f6879920d95471da670306cc42d1cf5 schema:name nlm_unique_id
79 schema:value 1302751
80 rdf:type schema:PropertyValue
81 N7a0fe5b80d6c4f81b5c82582948a64f5 rdf:first Ne304d035c50d4da8b2f72163d7cc28e7
82 rdf:rest N2cbf1ac3abc54119856d9e0fe4b49056
83 Na4a758cae23e4c458893aa6a9f4258e3 rdf:first N15cbbb321d084c979696dee7eb21b27d
84 rdf:rest rdf:nil
85 Nb26469bba6fb4d1db4b0b9292cc5dcd3 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
86 schema:familyName Averbuch
87 schema:givenName Amir
88 rdf:type schema:Person
89 Nba0546bcfe984fe098133b52edd14e44 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
90 schema:familyName Salhov
91 schema:givenName Moshe
92 rdf:type schema:Person
93 Nbe709ab90aa24532a87ecfbc80d098dd schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nc06db19384464b028d71850f18ec639f schema:affiliation https://www.grid.ac/institutes/grid.12136.37
96 schema:familyName Konen
97 schema:givenName Eli
98 rdf:type schema:Person
99 Ne304d035c50d4da8b2f72163d7cc28e7 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
100 schema:familyName Shrot
101 schema:givenName Shai
102 rdf:type schema:Person
103 Ne77ccc5856ff4b4e8ea7de0d76804250 rdf:first N407c83a7649a43be854931b174332209
104 rdf:rest N4a6b43f348744a2bbcd8eef82120d79f
105 Nf2172f1fe0bf441486579f942df1d60c schema:name pubmed_id
106 schema:value 30949746
107 rdf:type schema:PropertyValue
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 sg:journal.1055404 schema:issn 0028-3940
115 1432-1920
116 schema:name Neuroradiology
117 rdf:type schema:Periodical
118 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
119 https://doi.org/10.1007/978-0-387-84858-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00234-006-0115-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020572891
122 https://doi.org/10.1007/s00234-006-0115-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11548-011-0559-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049297681
125 https://doi.org/10.1007/s11548-011-0559-3
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11548-012-0808-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033455236
128 https://doi.org/10.1007/s11548-012-0808-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1470-7330-14-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079033214
131 https://doi.org/10.1186/1470-7330-14-20
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1075147704 schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1077206466 schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1077859208 schema:CreativeWork
137 https://doi.org/10.1002/jmri.1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053241342
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/mrm.22147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027450786
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/nbm.3163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879474
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.clineuro.2004.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047100825
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cmpb.2007.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000596072
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.compbiomed.2018.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104602861
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ejmp.2015.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051837064
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ejrad.2010.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026033385
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.fcij.2017.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099931549
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.mri.2008.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591147
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.mri.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869594
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.mri.2013.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009092395
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neuroimage.2008.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051852546
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.nicl.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032565080
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.surneu.2007.07.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008106304
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0899-7071(02)00436-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032463617
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1097/rct.0b013e318261e913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051591623
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1102/1470-7330.2012.0038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022009532
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/42.668698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170625
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/titb.2012.2185807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657102
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1148/radiol.2223010558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025357471
178 rdf:type schema:CreativeWork
179 https://doi.org/10.14791/btrt.2015.3.1.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002008685
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3174/ajnr.a2333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005374928
182 rdf:type schema:CreativeWork
183 https://doi.org/10.4329/wjr.v6.i4.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524784
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
186 schema:name Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel.
187 Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel, 2 Sheba Rd, 52621, Ramat Gan, Israel. Shai.Shrot@Sheba.health.gov.il.
188 Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
189 Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. Shai.Shrot@Sheba.health.gov.il.
190 School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...