Variation of degree of stenosis quantification using different energy level with dual energy CT scanner View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Luca Saba, Giovanni Maria Argioas, Pierleone Lucatelli, Francesco Lavra, Jasjit S. Suri, Max Wintermark

ABSTRACT

PURPOSE: To investigate the variation in the quantification of the carotid degree of stenosis (DoS) with a dual energy computed tomography (CT), using different energy levels during the image reconstruction. METHODS: In this retrospective study, 53 subjects (37 males; mean age 67 ± 11 years; age range 47-83 years) studied with a multi-energy CT scanner were included. Datasets were reconstructed on a dedicated workstation and from the CT raw data multiple datasets were generated at the following monochromatic energy levels: 66, 70, 77, and 86 kilo-electronvolt (keV). Two radiologists independently performed all measurements for quantification of the degree of stenosis. Wilcoxon test was used to test the differences between the Hounsifield unit (HU) values in the plaques at different keV. RESULTS: The Wilcoxon analysis showed a statistically significant difference (p = 0.001) in the DoS assessment among the different keVs selected. The Bland-Altman analysis showed that the DoS difference had a linear relation with the keV difference (the bigger is the difference in keV, the bigger is the variation in DoS) and that for different keVs, the difference in DoS is reduced with its increase. CONCLUSION: A standardization in the use of the energy level during the image reconstruction should be considered. More... »

PAGES

285-291

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-018-2142-x

DOI

http://dx.doi.org/10.1007/s00234-018-2142-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110668262

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30554271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Polo di Monserrato s.s. 554 Monserrato, 09045, Cagliari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saba", 
        "givenName": "Luca", 
        "id": "sg:person.01332126323.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332126323.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, AOB di Cagliari, 09045, Cagliari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argioas", 
        "givenName": "Giovanni Maria", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiological, Oncological and Anatomopathological Sciences-Radiology, \u2018Sapienza\u2019 University of Rome, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lucatelli", 
        "givenName": "Pierleone", 
        "id": "sg:person.01224017445.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224017445.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Polo di Monserrato s.s. 554 Monserrato, 09045, Cagliari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavra", 
        "givenName": "Francesco", 
        "id": "sg:person.0627146273.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627146273.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Idaho", 
          "id": "https://www.grid.ac/institutes/grid.266456.5", 
          "name": [
            "Diagnostic and Monitoring Division, AtheroPoint\u2122 LLC, 95661, Roseville, CA, USA", 
            "Department of Electrical Engineering, University of Idaho (Affl.), Moscow, ID, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suri", 
        "givenName": "Jasjit S.", 
        "id": "sg:person.01227046462.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227046462.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford Medicine", 
          "id": "https://www.grid.ac/institutes/grid.240952.8", 
          "name": [
            "Department of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wintermark", 
        "givenName": "Max", 
        "id": "sg:person.01124027300.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124027300.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-014-3523-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003821205", 
          "https://doi.org/10.1007/s00330-014-3523-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14131480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2623-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012665321", 
          "https://doi.org/10.1007/s00330-012-2623-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014370445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-012-1120-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016854878", 
          "https://doi.org/10.1007/s00234-012-1120-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2009.04.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022502236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2099-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026724178", 
          "https://doi.org/10.1007/s00330-011-2099-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027992653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2015.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028054723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034250343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045219435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-015-1541-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047617038", 
          "https://doi.org/10.1007/s00234-015-1541-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.169.2.9242779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069321058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2016150185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079298854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5081-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092151532", 
          "https://doi.org/10.1007/s00330-017-5081-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100111030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100111030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2018.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100234065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100341807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100341807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2018.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101111780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2018.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101111780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101276053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101276053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101276053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20170927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101292225"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "PURPOSE: To investigate the variation in the quantification of the carotid degree of stenosis (DoS) with a dual energy computed tomography (CT), using different energy levels during the image reconstruction.\nMETHODS: In this retrospective study, 53 subjects (37 males; mean age 67\u2009\u00b1\u200911\u00a0years; age range 47-83\u00a0years) studied with a multi-energy CT scanner were included. Datasets were reconstructed on a dedicated workstation and from the CT raw data multiple datasets were generated at the following monochromatic energy levels: 66, 70, 77, and 86\u00a0kilo-electronvolt (keV). Two radiologists independently performed all measurements for quantification of the degree of stenosis. Wilcoxon test was used to test the differences between the Hounsifield unit (HU) values in the plaques at different keV.\nRESULTS: The Wilcoxon analysis showed a statistically significant difference (p\u2009=\u20090.001) in the DoS assessment among the different keVs selected. The Bland-Altman analysis showed that the DoS difference had a linear relation with the keV difference (the bigger is the difference in keV, the bigger is the variation in DoS) and that for different keVs, the difference in DoS is reduced with its increase.\nCONCLUSION: A standardization in the use of the energy level during the image reconstruction should be considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00234-018-2142-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Variation of degree of stenosis quantification using different energy level with dual energy CT scanner", 
    "pagination": "285-291", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-018-2142-x"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36426ff95957cac62fcfbce9187904e7194108bbfcb3bfdf6f522f7b7d10d901"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110668262"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1302751"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30554271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-018-2142-x", 
      "https://app.dimensions.ai/details/publication/pub.1110668262"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119732_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00234-018-2142-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-018-2142-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-018-2142-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-018-2142-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-018-2142-x'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      62 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-018-2142-x schema:about N23cb7ecf830e495e9b4f6056379c10a3
2 N3ccf84394d36425295c73e64e9cfc28a
3 N479e2bd3d6c1424988a96cced6f9b86d
4 N53100841819b44b0b32256b2e3642f83
5 N55101f65f9ad4e05958b4708e8c3f24c
6 N6c8a3d7943474e0396caf8b5dc618ecc
7 Nac9c53d68bb9449fb09053b3bd98f4f0
8 Nb645e0b7b71f47629b95ec5d836da1c4
9 Nf283d272ad53447b95f3e9e38e8b1ba1
10 Nf3be8b4b9d0e4a32bd4762888c2bf7f2
11 Nfad70000c62c474195893f64ca32ffcd
12 anzsrc-for:11
13 anzsrc-for:1103
14 schema:author N0a12aa3b51d3470eac1e42d78593b068
15 schema:citation sg:pub.10.1007/s00234-012-1120-y
16 sg:pub.10.1007/s00234-015-1541-5
17 sg:pub.10.1007/s00330-011-2099-1
18 sg:pub.10.1007/s00330-012-2623-y
19 sg:pub.10.1007/s00330-014-3523-0
20 sg:pub.10.1007/s00330-017-5081-8
21 https://doi.org/10.1016/j.ejrad.2009.04.064
22 https://doi.org/10.1016/j.ejrad.2016.01.015
23 https://doi.org/10.1016/j.ejrad.2017.12.024
24 https://doi.org/10.1016/j.ejrad.2018.01.008
25 https://doi.org/10.1016/j.ejrad.2018.02.022
26 https://doi.org/10.1016/j.jcct.2015.12.008
27 https://doi.org/10.1097/rct.0000000000000685
28 https://doi.org/10.1148/radiol.14131480
29 https://doi.org/10.1148/rg.2016150185
30 https://doi.org/10.1259/bjr.20170927
31 https://doi.org/10.2214/ajr.07.2604
32 https://doi.org/10.2214/ajr.169.2.9242779
33 https://doi.org/10.3174/ajnr.a1509
34 https://doi.org/10.3174/ajnr.a2654
35 https://doi.org/10.3174/ajnr.a3285
36 https://doi.org/10.3174/ajnr.a5488
37 schema:datePublished 2019-03
38 schema:datePublishedReg 2019-03-01
39 schema:description PURPOSE: To investigate the variation in the quantification of the carotid degree of stenosis (DoS) with a dual energy computed tomography (CT), using different energy levels during the image reconstruction. METHODS: In this retrospective study, 53 subjects (37 males; mean age 67 ± 11 years; age range 47-83 years) studied with a multi-energy CT scanner were included. Datasets were reconstructed on a dedicated workstation and from the CT raw data multiple datasets were generated at the following monochromatic energy levels: 66, 70, 77, and 86 kilo-electronvolt (keV). Two radiologists independently performed all measurements for quantification of the degree of stenosis. Wilcoxon test was used to test the differences between the Hounsifield unit (HU) values in the plaques at different keV. RESULTS: The Wilcoxon analysis showed a statistically significant difference (p = 0.001) in the DoS assessment among the different keVs selected. The Bland-Altman analysis showed that the DoS difference had a linear relation with the keV difference (the bigger is the difference in keV, the bigger is the variation in DoS) and that for different keVs, the difference in DoS is reduced with its increase. CONCLUSION: A standardization in the use of the energy level during the image reconstruction should be considered.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N723e192c7cba421188381e14d2771311
44 Na95f3eb8380a4c1b8652a5ccbebeb45c
45 sg:journal.1055404
46 schema:name Variation of degree of stenosis quantification using different energy level with dual energy CT scanner
47 schema:pagination 285-291
48 schema:productId N1de0a6cfacb64918a89fbddbedb958ec
49 N2d611a6eedfd4b7182abca87a10527cf
50 N484e5a6f58b64cb78851645d79e38a88
51 Na9d5200248704bb48237281150a4235a
52 Ne204067eb2b047d0a9ba1bad1eef9eeb
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110668262
54 https://doi.org/10.1007/s00234-018-2142-x
55 schema:sdDatePublished 2019-04-15T08:51
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N10aa93a155d046e0948f26ae92cc2143
58 schema:url https://link.springer.com/10.1007%2Fs00234-018-2142-x
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0a12aa3b51d3470eac1e42d78593b068 rdf:first sg:person.01332126323.54
63 rdf:rest N9bf1f789ecf2480fb0eb456739c2a8b5
64 N0a479238480746ed8b8d89e8a594e3d7 schema:name Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Polo di Monserrato s.s. 554 Monserrato, 09045, Cagliari, Italy
65 rdf:type schema:Organization
66 N10aa93a155d046e0948f26ae92cc2143 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N15c67d4414754f19805e567009e617c5 rdf:first sg:person.01124027300.53
69 rdf:rest rdf:nil
70 N1de0a6cfacb64918a89fbddbedb958ec schema:name doi
71 schema:value 10.1007/s00234-018-2142-x
72 rdf:type schema:PropertyValue
73 N23cb7ecf830e495e9b4f6056379c10a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Tomography, X-Ray Computed
75 rdf:type schema:DefinedTerm
76 N2d611a6eedfd4b7182abca87a10527cf schema:name readcube_id
77 schema:value 36426ff95957cac62fcfbce9187904e7194108bbfcb3bfdf6f522f7b7d10d901
78 rdf:type schema:PropertyValue
79 N365517042499473a976ba484c16e9cfe schema:name Department of Radiology, AOB di Cagliari, 09045, Cagliari, Italy
80 rdf:type schema:Organization
81 N3ccf84394d36425295c73e64e9cfc28a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Radiographic Image Interpretation, Computer-Assisted
83 rdf:type schema:DefinedTerm
84 N479e2bd3d6c1424988a96cced6f9b86d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Radiography, Dual-Energy Scanned Projection
86 rdf:type schema:DefinedTerm
87 N484e5a6f58b64cb78851645d79e38a88 schema:name pubmed_id
88 schema:value 30554271
89 rdf:type schema:PropertyValue
90 N53100841819b44b0b32256b2e3642f83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Aged
92 rdf:type schema:DefinedTerm
93 N55101f65f9ad4e05958b4708e8c3f24c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Aged, 80 and over
95 rdf:type schema:DefinedTerm
96 N56811cb353454ef6af193d9f67b45ebe rdf:first sg:person.01227046462.13
97 rdf:rest N15c67d4414754f19805e567009e617c5
98 N6c8a3d7943474e0396caf8b5dc618ecc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Retrospective Studies
100 rdf:type schema:DefinedTerm
101 N723e192c7cba421188381e14d2771311 schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 N787a25e42cbb4e9aa0da2fc7e4dbb0c5 schema:name Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Polo di Monserrato s.s. 554 Monserrato, 09045, Cagliari, Italy
104 rdf:type schema:Organization
105 N7a3011b81ebd476abfff296f0f0288d0 schema:affiliation N365517042499473a976ba484c16e9cfe
106 schema:familyName Argioas
107 schema:givenName Giovanni Maria
108 rdf:type schema:Person
109 N91f070795ed74e3b93b4bcb8ef84cb67 rdf:first sg:person.01224017445.49
110 rdf:rest Nf84f1075170a4322be0c792774e99721
111 N9bf1f789ecf2480fb0eb456739c2a8b5 rdf:first N7a3011b81ebd476abfff296f0f0288d0
112 rdf:rest N91f070795ed74e3b93b4bcb8ef84cb67
113 Na95f3eb8380a4c1b8652a5ccbebeb45c schema:volumeNumber 61
114 rdf:type schema:PublicationVolume
115 Na9d5200248704bb48237281150a4235a schema:name nlm_unique_id
116 schema:value 1302751
117 rdf:type schema:PropertyValue
118 Nac9c53d68bb9449fb09053b3bd98f4f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Carotid Stenosis
120 rdf:type schema:DefinedTerm
121 Nb645e0b7b71f47629b95ec5d836da1c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Female
123 rdf:type schema:DefinedTerm
124 Ne204067eb2b047d0a9ba1bad1eef9eeb schema:name dimensions_id
125 schema:value pub.1110668262
126 rdf:type schema:PropertyValue
127 Nf283d272ad53447b95f3e9e38e8b1ba1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Male
129 rdf:type schema:DefinedTerm
130 Nf3be8b4b9d0e4a32bd4762888c2bf7f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Middle Aged
132 rdf:type schema:DefinedTerm
133 Nf84f1075170a4322be0c792774e99721 rdf:first sg:person.0627146273.14
134 rdf:rest N56811cb353454ef6af193d9f67b45ebe
135 Nfad70000c62c474195893f64ca32ffcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Humans
137 rdf:type schema:DefinedTerm
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
142 schema:name Clinical Sciences
143 rdf:type schema:DefinedTerm
144 sg:journal.1055404 schema:issn 0028-3940
145 1432-1920
146 schema:name Neuroradiology
147 rdf:type schema:Periodical
148 sg:person.01124027300.53 schema:affiliation https://www.grid.ac/institutes/grid.240952.8
149 schema:familyName Wintermark
150 schema:givenName Max
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124027300.53
152 rdf:type schema:Person
153 sg:person.01224017445.49 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
154 schema:familyName Lucatelli
155 schema:givenName Pierleone
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224017445.49
157 rdf:type schema:Person
158 sg:person.01227046462.13 schema:affiliation https://www.grid.ac/institutes/grid.266456.5
159 schema:familyName Suri
160 schema:givenName Jasjit S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227046462.13
162 rdf:type schema:Person
163 sg:person.01332126323.54 schema:affiliation N0a479238480746ed8b8d89e8a594e3d7
164 schema:familyName Saba
165 schema:givenName Luca
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332126323.54
167 rdf:type schema:Person
168 sg:person.0627146273.14 schema:affiliation N787a25e42cbb4e9aa0da2fc7e4dbb0c5
169 schema:familyName Lavra
170 schema:givenName Francesco
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627146273.14
172 rdf:type schema:Person
173 sg:pub.10.1007/s00234-012-1120-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016854878
174 https://doi.org/10.1007/s00234-012-1120-y
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00234-015-1541-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047617038
177 https://doi.org/10.1007/s00234-015-1541-5
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00330-011-2099-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026724178
180 https://doi.org/10.1007/s00330-011-2099-1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00330-012-2623-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012665321
183 https://doi.org/10.1007/s00330-012-2623-y
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00330-014-3523-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003821205
186 https://doi.org/10.1007/s00330-014-3523-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00330-017-5081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092151532
189 https://doi.org/10.1007/s00330-017-5081-8
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.ejrad.2009.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022502236
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.ejrad.2016.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034250343
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ejrad.2017.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100111030
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.ejrad.2018.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100234065
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ejrad.2018.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101111780
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jcct.2015.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028054723
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/rct.0000000000000685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101276053
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1148/radiol.14131480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993689
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1148/rg.2016150185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079298854
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1259/bjr.20170927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101292225
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2214/ajr.07.2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298753
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2214/ajr.169.2.9242779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069321058
214 rdf:type schema:CreativeWork
215 https://doi.org/10.3174/ajnr.a1509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014370445
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3174/ajnr.a2654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027992653
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3174/ajnr.a3285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219435
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3174/ajnr.a5488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100341807
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.240952.8 schema:alternateName Stanford Medicine
224 schema:name Department of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, CA, USA
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.266456.5 schema:alternateName University of Idaho
227 schema:name Department of Electrical Engineering, University of Idaho (Affl.), Moscow, ID, USA
228 Diagnostic and Monitoring Division, AtheroPoint™ LLC, 95661, Roseville, CA, USA
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
231 schema:name Department of Radiological, Oncological and Anatomopathological Sciences-Radiology, ‘Sapienza’ University of Rome, Rome, Italy
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...