Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06-02

AUTHORS

Atsushi Nakanishi, Issei Fukunaga, Masaaki Hori, Yoshitaka Masutani, Hattori Takaaki, Masakazu Miyajima, Shigeki Aoki

ABSTRACT

IntroductionThe goals of this study were to examine the usefulness of diffusional kurtosis imaging (DKI) for assessing microstructural changes in the compressed corticospinal tract (CST) among patients with idiopathic normal pressure hydrocephalus (iNPH).MethodsEleven patients with iNPH (mean age: 73.6 years, range: 65–84), who underwent 3-T magnetic resonance imaging, including DKI before surgery, were recruited. Six age-matched, healthy subjects (mean age: 69.8 years, range: 60–75) served as the control group. DKI and diffusion tensor imaging parameters were calculated and compared between the iNPH and the control groups using tract-specific analysis of the CST at the level of the lateral ventricle.ResultsMean diffusional kurtosis (DK) and axial diffusion kurtosis were significantly lower in iNPH patients. However, apparent diffusion coefficient, fractional anisotropy, and axial eigenvalue (λ1) were significantly higher in the iNPH group than in the control group.ConclusionsThe mechanical pressure caused by ventricular enlargement in iNPH patients might induce formation of well-aligned fiber tracts and increased fiber density in the CST, resulting in decreased DK. DKI is able to depict both the altered microstructure and water molecule movement within neural axons and intra- or extracellular space. In addition, the investigated DKI parameters provide different information about white matter relative to conventional diffusional metrics for iNPH. More... »

PAGES

971-976

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-013-1201-6

DOI

http://dx.doi.org/10.1007/s00234-013-1201-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010801789

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23728069


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Tensor Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrocephalus, Normal Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Fibers, Myelinated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pyramidal Tracts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakanishi", 
        "givenName": "Atsushi", 
        "id": "sg:person.01307624513.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307624513.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, 116-8551, Arakawa, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan", 
            "Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, 116-8551, Arakawa, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukunaga", 
        "givenName": "Issei", 
        "id": "sg:person.01173376113.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173376113.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hori", 
        "givenName": "Masaaki", 
        "id": "sg:person.0764361461.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764361461.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, 113-8655, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, 113-8655, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masutani", 
        "givenName": "Yoshitaka", 
        "id": "sg:person.0700250567.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700250567.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8510, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8510, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takaaki", 
        "givenName": "Hattori", 
        "id": "sg:person.01243432457.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243432457.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurosurgery, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyajima", 
        "givenName": "Masakazu", 
        "id": "sg:person.01202611574.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202611574.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aoki", 
        "givenName": "Shigeki", 
        "id": "sg:person.01215036461.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215036461.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00415-011-6038-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031484982", 
          "https://doi.org/10.1007/s00415-011-6038-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-009-0580-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014105490", 
          "https://doi.org/10.1007/s00234-009-0580-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2410-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045186824", 
          "https://doi.org/10.1007/s00330-012-2410-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00381-007-0303-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025006314", 
          "https://doi.org/10.1007/s00381-007-0303-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-013-0371-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016786184", 
          "https://doi.org/10.1007/s10334-013-0371-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06-02", 
    "datePublishedReg": "2013-06-02", 
    "description": "IntroductionThe goals of this study were to examine the usefulness of diffusional kurtosis imaging (DKI) for assessing microstructural changes in the compressed corticospinal tract (CST) among patients with idiopathic normal pressure hydrocephalus (iNPH).MethodsEleven patients with iNPH (mean age: 73.6\u00a0years, range: 65\u201384), who underwent 3-T magnetic resonance imaging, including DKI before surgery, were recruited. Six age-matched, healthy subjects (mean age: 69.8\u00a0years, range: 60\u201375) served as the control group. DKI and diffusion tensor imaging parameters were calculated and compared between the iNPH and the control groups using tract-specific analysis of the CST at the level of the lateral ventricle.ResultsMean diffusional kurtosis (DK) and axial diffusion kurtosis were significantly lower in iNPH patients. However, apparent diffusion coefficient, fractional anisotropy, and axial eigenvalue (\u03bb1) were significantly higher in the iNPH group than in the control group.ConclusionsThe mechanical pressure caused by ventricular enlargement in iNPH patients might induce formation of well-aligned fiber tracts and increased fiber density in the CST, resulting in decreased DK. DKI is able to depict both the altered microstructure and water molecule movement within neural axons and intra- or extracellular space. In addition, the investigated DKI parameters provide different information about white matter relative to conventional diffusional metrics for iNPH.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00234-013-1201-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6123311", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "idiopathic normal pressure hydrocephalus", 
      "normal pressure hydrocephalus", 
      "corticospinal tract", 
      "diffusional kurtosis imaging", 
      "control group", 
      "iNPH patients", 
      "pressure hydrocephalus", 
      "diffusional kurtosis", 
      "magnetic resonance imaging", 
      "tract-specific analysis", 
      "diffusion tensor", 
      "kurtosis imaging", 
      "iNPH group", 
      "ventricular enlargement", 
      "MethodsEleven patients", 
      "lateral ventricle", 
      "healthy subjects", 
      "white matter", 
      "patients", 
      "IntroductionThe goal", 
      "resonance imaging", 
      "axial eigenvalues", 
      "apparent diffusion coefficient", 
      "fractional anisotropy", 
      "fiber density", 
      "fiber tracts", 
      "neural axons", 
      "tract", 
      "hydrocephalus", 
      "DKI parameters", 
      "diffusion kurtosis", 
      "extracellular space", 
      "imaging", 
      "group", 
      "water molecule movement", 
      "surgery", 
      "ventricle", 
      "axons", 
      "altered microstructure", 
      "enlargement", 
      "subjects", 
      "mechanical pressure", 
      "changes", 
      "levels", 
      "study", 
      "usefulness", 
      "pressure", 
      "different information", 
      "addition", 
      "comparison", 
      "analysis", 
      "movement", 
      "molecule movement", 
      "microstructural changes", 
      "goal", 
      "information", 
      "parameters", 
      "formation", 
      "kurtosis", 
      "matter", 
      "density", 
      "coefficient", 
      "diffusion coefficient", 
      "metrics", 
      "space", 
      "tensor", 
      "anisotropy", 
      "microstructure", 
      "eigenvalues"
    ], 
    "name": "Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging", 
    "pagination": "971-976", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010801789"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-013-1201-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23728069"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-013-1201-6", 
      "https://app.dimensions.ai/details/publication/pub.1010801789"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_597.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00234-013-1201-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-013-1201-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-013-1201-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-013-1201-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-013-1201-6'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      22 PREDICATES      112 URIs      99 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-013-1201-6 schema:about N0a98a459d25b47a392d1aa614efd1c04
2 N0b402dfa99bf4157bb74fe4c96c2ce85
3 N2c869b50f2ed4d348f4ec1932c1dedbb
4 N308c8a1986f745d883bd4acb39c11dc0
5 N45de73b212ab42e396c8429dd43be9ae
6 N49ad26ca930f43b2acda568e8f2c77c6
7 N63ab425bf00a47da87652b2301a29888
8 N9cfbedaf8b2143d2bd00afb96e3794d3
9 Na8e7c4243d8541c5b0c0742d13e1441d
10 Nc19cdf5026ae483e87235552858aaeac
11 Ncc33d738e17949748606ac52d54e9c36
12 Nec220df6185c4ffea961497dbaf06a21
13 anzsrc-for:11
14 anzsrc-for:1109
15 schema:author Nf9033f5cdc644fa89cfe153f52a7c1ad
16 schema:citation sg:pub.10.1007/s00234-009-0580-1
17 sg:pub.10.1007/s00330-012-2410-9
18 sg:pub.10.1007/s00381-007-0303-z
19 sg:pub.10.1007/s00415-011-6038-5
20 sg:pub.10.1007/s10334-013-0371-x
21 schema:datePublished 2013-06-02
22 schema:datePublishedReg 2013-06-02
23 schema:description IntroductionThe goals of this study were to examine the usefulness of diffusional kurtosis imaging (DKI) for assessing microstructural changes in the compressed corticospinal tract (CST) among patients with idiopathic normal pressure hydrocephalus (iNPH).MethodsEleven patients with iNPH (mean age: 73.6 years, range: 65–84), who underwent 3-T magnetic resonance imaging, including DKI before surgery, were recruited. Six age-matched, healthy subjects (mean age: 69.8 years, range: 60–75) served as the control group. DKI and diffusion tensor imaging parameters were calculated and compared between the iNPH and the control groups using tract-specific analysis of the CST at the level of the lateral ventricle.ResultsMean diffusional kurtosis (DK) and axial diffusion kurtosis were significantly lower in iNPH patients. However, apparent diffusion coefficient, fractional anisotropy, and axial eigenvalue (λ1) were significantly higher in the iNPH group than in the control group.ConclusionsThe mechanical pressure caused by ventricular enlargement in iNPH patients might induce formation of well-aligned fiber tracts and increased fiber density in the CST, resulting in decreased DK. DKI is able to depict both the altered microstructure and water molecule movement within neural axons and intra- or extracellular space. In addition, the investigated DKI parameters provide different information about white matter relative to conventional diffusional metrics for iNPH.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N81c80db1220a46f6a56f8b04ecd8dae1
28 N870abe1e05964a8bb4b68adc5ae05822
29 sg:journal.1055404
30 schema:keywords DKI parameters
31 IntroductionThe goal
32 MethodsEleven patients
33 addition
34 altered microstructure
35 analysis
36 anisotropy
37 apparent diffusion coefficient
38 axial eigenvalues
39 axons
40 changes
41 coefficient
42 comparison
43 control group
44 corticospinal tract
45 density
46 different information
47 diffusion coefficient
48 diffusion kurtosis
49 diffusion tensor
50 diffusional kurtosis
51 diffusional kurtosis imaging
52 eigenvalues
53 enlargement
54 extracellular space
55 fiber density
56 fiber tracts
57 formation
58 fractional anisotropy
59 goal
60 group
61 healthy subjects
62 hydrocephalus
63 iNPH group
64 iNPH patients
65 idiopathic normal pressure hydrocephalus
66 imaging
67 information
68 kurtosis
69 kurtosis imaging
70 lateral ventricle
71 levels
72 magnetic resonance imaging
73 matter
74 mechanical pressure
75 metrics
76 microstructural changes
77 microstructure
78 molecule movement
79 movement
80 neural axons
81 normal pressure hydrocephalus
82 parameters
83 patients
84 pressure
85 pressure hydrocephalus
86 resonance imaging
87 space
88 study
89 subjects
90 surgery
91 tensor
92 tract
93 tract-specific analysis
94 usefulness
95 ventricle
96 ventricular enlargement
97 water molecule movement
98 white matter
99 schema:name Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging
100 schema:pagination 971-976
101 schema:productId N1fbf36202f4946d494199a9cb5edd24d
102 N29730c79d15d425ca5c6b7ff6f0c28d2
103 Nc3026f23c66744ea906e368d444f82e4
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010801789
105 https://doi.org/10.1007/s00234-013-1201-6
106 schema:sdDatePublished 2022-05-20T07:28
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N3749126274454924ab5997ba907b8b82
109 schema:url https://doi.org/10.1007/s00234-013-1201-6
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0a98a459d25b47a392d1aa614efd1c04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Pyramidal Tracts
115 rdf:type schema:DefinedTerm
116 N0b402dfa99bf4157bb74fe4c96c2ce85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Aged
118 rdf:type schema:DefinedTerm
119 N1fbf36202f4946d494199a9cb5edd24d schema:name doi
120 schema:value 10.1007/s00234-013-1201-6
121 rdf:type schema:PropertyValue
122 N29730c79d15d425ca5c6b7ff6f0c28d2 schema:name dimensions_id
123 schema:value pub.1010801789
124 rdf:type schema:PropertyValue
125 N2c869b50f2ed4d348f4ec1932c1dedbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Reproducibility of Results
127 rdf:type schema:DefinedTerm
128 N3074b9c46a51462c8f189691392efa99 rdf:first sg:person.01243432457.29
129 rdf:rest N32f6c322ec7948ffa1288634137c2327
130 N308c8a1986f745d883bd4acb39c11dc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Aged, 80 and over
132 rdf:type schema:DefinedTerm
133 N32f6c322ec7948ffa1288634137c2327 rdf:first sg:person.01202611574.46
134 rdf:rest Nab1da785af1349c6834e41078e4a71f7
135 N3749126274454924ab5997ba907b8b82 schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 N45de73b212ab42e396c8429dd43be9ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Sensitivity and Specificity
139 rdf:type schema:DefinedTerm
140 N49ad26ca930f43b2acda568e8f2c77c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Nerve Fibers, Myelinated
142 rdf:type schema:DefinedTerm
143 N55bcd5ee4889431780d3358c0eaa5ae7 rdf:first sg:person.01173376113.12
144 rdf:rest N6374c4e390fe464eac3ec8a6882134cf
145 N6374c4e390fe464eac3ec8a6882134cf rdf:first sg:person.0764361461.98
146 rdf:rest Nc145cd3122344ed480a47785e65a94f5
147 N63ab425bf00a47da87652b2301a29888 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Male
149 rdf:type schema:DefinedTerm
150 N81c80db1220a46f6a56f8b04ecd8dae1 schema:volumeNumber 55
151 rdf:type schema:PublicationVolume
152 N870abe1e05964a8bb4b68adc5ae05822 schema:issueNumber 8
153 rdf:type schema:PublicationIssue
154 N9cfbedaf8b2143d2bd00afb96e3794d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Hydrocephalus, Normal Pressure
156 rdf:type schema:DefinedTerm
157 Na8e7c4243d8541c5b0c0742d13e1441d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Image Interpretation, Computer-Assisted
159 rdf:type schema:DefinedTerm
160 Nab1da785af1349c6834e41078e4a71f7 rdf:first sg:person.01215036461.13
161 rdf:rest rdf:nil
162 Nc145cd3122344ed480a47785e65a94f5 rdf:first sg:person.0700250567.39
163 rdf:rest N3074b9c46a51462c8f189691392efa99
164 Nc19cdf5026ae483e87235552858aaeac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Female
166 rdf:type schema:DefinedTerm
167 Nc3026f23c66744ea906e368d444f82e4 schema:name pubmed_id
168 schema:value 23728069
169 rdf:type schema:PropertyValue
170 Ncc33d738e17949748606ac52d54e9c36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Humans
172 rdf:type schema:DefinedTerm
173 Nec220df6185c4ffea961497dbaf06a21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Diffusion Tensor Imaging
175 rdf:type schema:DefinedTerm
176 Nf9033f5cdc644fa89cfe153f52a7c1ad rdf:first sg:person.01307624513.27
177 rdf:rest N55bcd5ee4889431780d3358c0eaa5ae7
178 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
179 schema:name Medical and Health Sciences
180 rdf:type schema:DefinedTerm
181 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
182 schema:name Neurosciences
183 rdf:type schema:DefinedTerm
184 sg:grant.6123311 http://pending.schema.org/fundedItem sg:pub.10.1007/s00234-013-1201-6
185 rdf:type schema:MonetaryGrant
186 sg:journal.1055404 schema:issn 0028-3940
187 1432-1920
188 schema:name Neuroradiology
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01173376113.12 schema:affiliation grid-institutes:grid.265074.2
192 schema:familyName Fukunaga
193 schema:givenName Issei
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173376113.12
195 rdf:type schema:Person
196 sg:person.01202611574.46 schema:affiliation grid-institutes:grid.258269.2
197 schema:familyName Miyajima
198 schema:givenName Masakazu
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202611574.46
200 rdf:type schema:Person
201 sg:person.01215036461.13 schema:affiliation grid-institutes:grid.258269.2
202 schema:familyName Aoki
203 schema:givenName Shigeki
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215036461.13
205 rdf:type schema:Person
206 sg:person.01243432457.29 schema:affiliation grid-institutes:grid.265073.5
207 schema:familyName Takaaki
208 schema:givenName Hattori
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243432457.29
210 rdf:type schema:Person
211 sg:person.01307624513.27 schema:affiliation grid-institutes:grid.258269.2
212 schema:familyName Nakanishi
213 schema:givenName Atsushi
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307624513.27
215 rdf:type schema:Person
216 sg:person.0700250567.39 schema:affiliation grid-institutes:grid.26999.3d
217 schema:familyName Masutani
218 schema:givenName Yoshitaka
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700250567.39
220 rdf:type schema:Person
221 sg:person.0764361461.98 schema:affiliation grid-institutes:grid.258269.2
222 schema:familyName Hori
223 schema:givenName Masaaki
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764361461.98
225 rdf:type schema:Person
226 sg:pub.10.1007/s00234-009-0580-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014105490
227 https://doi.org/10.1007/s00234-009-0580-1
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00330-012-2410-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045186824
230 https://doi.org/10.1007/s00330-012-2410-9
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00381-007-0303-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025006314
233 https://doi.org/10.1007/s00381-007-0303-z
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s00415-011-6038-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031484982
236 https://doi.org/10.1007/s00415-011-6038-5
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s10334-013-0371-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016786184
239 https://doi.org/10.1007/s10334-013-0371-x
240 rdf:type schema:CreativeWork
241 grid-institutes:grid.258269.2 schema:alternateName Department of Neurosurgery, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan
242 Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan
243 schema:name Department of Neurosurgery, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan
244 Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan
245 rdf:type schema:Organization
246 grid-institutes:grid.265073.5 schema:alternateName Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8510, Bunkyo-ku, Tokyo, Japan
247 schema:name Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8510, Bunkyo-ku, Tokyo, Japan
248 rdf:type schema:Organization
249 grid-institutes:grid.265074.2 schema:alternateName Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, 116-8551, Arakawa, Tokyo, Japan
250 schema:name Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, 116-8551, Arakawa, Tokyo, Japan
251 Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyo-ku, Tokyo, Japan
252 rdf:type schema:Organization
253 grid-institutes:grid.26999.3d schema:alternateName Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, 113-8655, Bunkyo-ku, Tokyo, Japan
254 schema:name Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, 113-8655, Bunkyo-ku, Tokyo, Japan
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...