Age-related white matter changes in high b-value q-space diffusion-weighted imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Zareen Fatima, Utaroh Motosugi, Masaaki Hori, Toshiyuki Onodera, Keiichi Ishigame, Kazuo Yagi, Tsutomu Araki

ABSTRACT

INTRODUCTION: To assess and compare age-related diffusion changes in the white matter in different cerebral lobes, as quantified by diffusion-weighted imaging (DWI) and high b-value q-space imaging (QSI). METHODS: Seventy-three cases without neurological symptoms or imaging abnormalities were grouped by age as young (<30 years, n = 20), middle-aged (30-49 years, n = 19), old (50-69 years, n = 18), and very old (> 70 years, n = 16) and imaged by a 1.5-T MR scanner for DWI and QSI. Apparent diffusion coefficient (ADC) and mean displacement (MDP) values were calculated in the white matter of frontal, parietal, and temporal lobes and compared using Dunnett's test, with the young group as a control. RESULTS: MDP values in frontal and parietal lobes were significantly higher in old and very old age groups than in the young, while those in the temporal lobes were significantly higher only in the very old group. ADC values were significantly higher in all three lobes in the very old group. CONCLUSION: QSI is more sensitive than DWI to age-related myelin loss in white matter. More... »

PAGES

253-259

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00234-012-1099-4

DOI

http://dx.doi.org/10.1007/s00234-012-1099-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038853980

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23053002


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Fibers, Myelinated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Yamanashi", 
          "id": "https://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Radiology, University of Yamanashi, 1110 Shimokato, 409-3898, Ch\u016b\u014d, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fatima", 
        "givenName": "Zareen", 
        "id": "sg:person.01336043533.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336043533.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Yamanashi", 
          "id": "https://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Radiology, University of Yamanashi, 1110 Shimokato, 409-3898, Ch\u016b\u014d, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motosugi", 
        "givenName": "Utaroh", 
        "id": "sg:person.0605715067.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605715067.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Juntendo University", 
          "id": "https://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunky\u014d, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hori", 
        "givenName": "Masaaki", 
        "id": "sg:person.0764361461.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764361461.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, 116-8551, Arakawa, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onodera", 
        "givenName": "Toshiyuki", 
        "id": "sg:person.0775001233.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775001233.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Yamanashi", 
          "id": "https://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Radiology, University of Yamanashi, 1110 Shimokato, 409-3898, Ch\u016b\u014d, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishigame", 
        "givenName": "Keiichi", 
        "id": "sg:person.01225654353.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225654353.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, 116-8551, Arakawa, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yagi", 
        "givenName": "Kazuo", 
        "id": "sg:person.015000430571.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000430571.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Yamanashi", 
          "id": "https://www.grid.ac/institutes/grid.267500.6", 
          "name": [
            "Department of Radiology, University of Yamanashi, 1110 Shimokato, 409-3898, Ch\u016b\u014d, Yamanashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araki", 
        "givenName": "Tsutomu", 
        "id": "sg:person.01364365631.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364365631.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2463/mrms.9.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004013428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2463/mrms.9.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004013428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awn265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010104565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-510x(02)00297-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011772340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-510x(02)00297-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011772340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(200002)43:2<191::aid-mrm5>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013316806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2003.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016225406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2273020721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021647448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022976398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000057698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023124805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.10714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023186894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023756419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1552-6569.2011.00596.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025487294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-4886(03)00274-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026892687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027419659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2594(200011)44:5<713::aid-mrm9>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028276580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032216308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2011.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032749461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0197-4580(01)00318-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033220393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041364045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2004.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046065302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03323607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049905785", 
          "https://doi.org/10.1007/bf03323607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.17.6.1090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051359062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2008.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051497422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000194256.15247.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064347769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000194256.15247.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064347769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000194256.15247.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064347769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.149.2.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069314423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.175.2.1750425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074659659", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074737827", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074737828", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074751036", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074999042", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074999052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-002-1549-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075222260", 
          "https://doi.org/10.1007/s00330-002-1549-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2011.110226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078473572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1258/ar.2011.110226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078473572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082607831", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "INTRODUCTION: To assess and compare age-related diffusion changes in the white matter in different cerebral lobes, as quantified by diffusion-weighted imaging (DWI) and high b-value q-space imaging (QSI).\nMETHODS: Seventy-three cases without neurological symptoms or imaging abnormalities were grouped by age as young (<30 years, n = 20), middle-aged (30-49 years, n = 19), old (50-69 years, n = 18), and very old (> 70 years, n = 16) and imaged by a 1.5-T MR scanner for DWI and QSI. Apparent diffusion coefficient (ADC) and mean displacement (MDP) values were calculated in the white matter of frontal, parietal, and temporal lobes and compared using Dunnett's test, with the young group as a control.\nRESULTS: MDP values in frontal and parietal lobes were significantly higher in old and very old age groups than in the young, while those in the temporal lobes were significantly higher only in the very old group. ADC values were significantly higher in all three lobes in the very old group.\nCONCLUSION: QSI is more sensitive than DWI to age-related myelin loss in white matter.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00234-012-1099-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1055404", 
        "issn": [
          "0028-3940", 
          "1432-1920"
        ], 
        "name": "Neuroradiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Age-related white matter changes in high b-value q-space diffusion-weighted imaging", 
    "pagination": "253-259", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b915446ce2682bc6fc95ba0c6e023f25951a2e76c4ac059c7619a1619c415c3c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23053002"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1302751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00234-012-1099-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038853980"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00234-012-1099-4", 
      "https://app.dimensions.ai/details/publication/pub.1038853980"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00234-012-1099-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00234-012-1099-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00234-012-1099-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00234-012-1099-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00234-012-1099-4'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      80 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00234-012-1099-4 schema:about N09d266b967a44ef78b25ca7124844dbd
2 N1667c913b731451580a0785beab37be1
3 N2437e8201e42499f8bc0ec3a305d3af1
4 N35cf610e5c7d421abe33744ae86b7d43
5 N4688dca9eaa44fc989106c5559415cb6
6 N5293930096ce43b49105c5eaa2021755
7 N62b9e08281284cd8b427e0d713fcddc1
8 N935efcc7de0a436dbb5301d458ecc112
9 N954d917965e84f7e89af9736b80dab3f
10 N9f4a4507f01a4ff5992fc51dad9229db
11 Na7251b2978c449299c06c813394d1eb8
12 Nac62f13d4c8c41c18e7486c5cbdb43d9
13 Naf9d43c9a4b04b88a2a21f7160b56db8
14 Nc078b9acf43040329d764d413601f4fc
15 Nd058eed206df497984b8dbd1d8886810
16 Ne61700464f5b42a9b6fce4cd7603d9bc
17 Nf7b23b93b63a4c59b8a476db67a5d417
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author Nb851756e100841d9b28654abb9e7fe84
21 schema:citation sg:pub.10.1007/bf03323607
22 sg:pub.10.1007/s00330-002-1549-1
23 https://app.dimensions.ai/details/publication/pub.1074659659
24 https://app.dimensions.ai/details/publication/pub.1074737827
25 https://app.dimensions.ai/details/publication/pub.1074737828
26 https://app.dimensions.ai/details/publication/pub.1074751036
27 https://app.dimensions.ai/details/publication/pub.1074999042
28 https://app.dimensions.ai/details/publication/pub.1074999052
29 https://app.dimensions.ai/details/publication/pub.1082607831
30 https://doi.org/10.1002/(sici)1522-2594(200002)43:2<191::aid-mrm5>3.0.co;2-b
31 https://doi.org/10.1002/1522-2594(200011)44:5<713::aid-mrm9>3.0.co;2-6
32 https://doi.org/10.1002/cne.10714
33 https://doi.org/10.1002/mrm.10040
34 https://doi.org/10.1002/mrm.21563
35 https://doi.org/10.1002/nbm.778
36 https://doi.org/10.1016/j.acra.2011.02.005
37 https://doi.org/10.1016/j.mri.2005.04.008
38 https://doi.org/10.1016/j.mri.2007.09.001
39 https://doi.org/10.1016/j.neurobiolaging.2004.09.017
40 https://doi.org/10.1016/j.neurobiolaging.2008.10.009
41 https://doi.org/10.1016/j.neuroimage.2003.11.004
42 https://doi.org/10.1016/s0014-4886(03)00274-7
43 https://doi.org/10.1016/s0022-510x(02)00297-6
44 https://doi.org/10.1016/s0197-4580(01)00318-9
45 https://doi.org/10.1093/brain/awn265
46 https://doi.org/10.1111/j.1552-6569.2011.00596.x
47 https://doi.org/10.1148/radiol.2273020721
48 https://doi.org/10.1159/000057698
49 https://doi.org/10.1161/01.str.17.6.1090
50 https://doi.org/10.1212/01.wnl.0000194256.15247.83
51 https://doi.org/10.1258/ar.2011.110226
52 https://doi.org/10.2214/ajr.149.2.351
53 https://doi.org/10.2214/ajr.175.2.1750425
54 https://doi.org/10.2463/mrms.9.109
55 schema:datePublished 2013-03
56 schema:datePublishedReg 2013-03-01
57 schema:description INTRODUCTION: To assess and compare age-related diffusion changes in the white matter in different cerebral lobes, as quantified by diffusion-weighted imaging (DWI) and high b-value q-space imaging (QSI). METHODS: Seventy-three cases without neurological symptoms or imaging abnormalities were grouped by age as young (<30 years, n = 20), middle-aged (30-49 years, n = 19), old (50-69 years, n = 18), and very old (> 70 years, n = 16) and imaged by a 1.5-T MR scanner for DWI and QSI. Apparent diffusion coefficient (ADC) and mean displacement (MDP) values were calculated in the white matter of frontal, parietal, and temporal lobes and compared using Dunnett's test, with the young group as a control. RESULTS: MDP values in frontal and parietal lobes were significantly higher in old and very old age groups than in the young, while those in the temporal lobes were significantly higher only in the very old group. ADC values were significantly higher in all three lobes in the very old group. CONCLUSION: QSI is more sensitive than DWI to age-related myelin loss in white matter.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N570736490dc944fa9e7cb891160a65b2
62 Ned63bd220fd1422587dc667ab8e08a3e
63 sg:journal.1055404
64 schema:name Age-related white matter changes in high b-value q-space diffusion-weighted imaging
65 schema:pagination 253-259
66 schema:productId N1191dacca44b4cab9e66c356e5a1c436
67 N72c52c56cf194b10babdc0d3f55ec814
68 N9a71b44d5d5341669b7462acb7a28c9c
69 Na3042c13e276440d8e8dfe7ff1c3c7dd
70 Nf22edcf6f9b04dd7a3360b82b2272acb
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038853980
72 https://doi.org/10.1007/s00234-012-1099-4
73 schema:sdDatePublished 2019-04-10T17:24
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N6fc1bb4259764125bf2524b92c8e77bd
76 schema:url http://link.springer.com/10.1007/s00234-012-1099-4
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0347883ac8294db1a9cdf9452382ef8d rdf:first sg:person.01364365631.59
81 rdf:rest rdf:nil
82 N09d266b967a44ef78b25ca7124844dbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Diffusion Magnetic Resonance Imaging
84 rdf:type schema:DefinedTerm
85 N0acff9c71c4d4948b590bc0205cab507 rdf:first sg:person.0605715067.44
86 rdf:rest N9f0df4cb8c134a2b99df93c1c7512ae7
87 N1191dacca44b4cab9e66c356e5a1c436 schema:name nlm_unique_id
88 schema:value 1302751
89 rdf:type schema:PropertyValue
90 N1667c913b731451580a0785beab37be1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Aging
92 rdf:type schema:DefinedTerm
93 N1ebfbbf4009b463eb0a17d69d5992c97 rdf:first sg:person.01225654353.06
94 rdf:rest Na201193d82c842408838844aeef6edd9
95 N2437e8201e42499f8bc0ec3a305d3af1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Aged
97 rdf:type schema:DefinedTerm
98 N35cf610e5c7d421abe33744ae86b7d43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Aged, 80 and over
100 rdf:type schema:DefinedTerm
101 N4688dca9eaa44fc989106c5559415cb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cerebral Cortex
103 rdf:type schema:DefinedTerm
104 N5293930096ce43b49105c5eaa2021755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N570736490dc944fa9e7cb891160a65b2 schema:issueNumber 3
108 rdf:type schema:PublicationIssue
109 N62b9e08281284cd8b427e0d713fcddc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Young Adult
111 rdf:type schema:DefinedTerm
112 N6fc1bb4259764125bf2524b92c8e77bd schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N72c52c56cf194b10babdc0d3f55ec814 schema:name readcube_id
115 schema:value b915446ce2682bc6fc95ba0c6e023f25951a2e76c4ac059c7619a1619c415c3c
116 rdf:type schema:PropertyValue
117 N935efcc7de0a436dbb5301d458ecc112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Sensitivity and Specificity
119 rdf:type schema:DefinedTerm
120 N954d917965e84f7e89af9736b80dab3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Adult
122 rdf:type schema:DefinedTerm
123 N9a71b44d5d5341669b7462acb7a28c9c schema:name doi
124 schema:value 10.1007/s00234-012-1099-4
125 rdf:type schema:PropertyValue
126 N9eb54436b01243eba774f08cbbff9553 rdf:first sg:person.0775001233.92
127 rdf:rest N1ebfbbf4009b463eb0a17d69d5992c97
128 N9f0df4cb8c134a2b99df93c1c7512ae7 rdf:first sg:person.0764361461.98
129 rdf:rest N9eb54436b01243eba774f08cbbff9553
130 N9f4a4507f01a4ff5992fc51dad9229db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Nerve Fibers, Myelinated
132 rdf:type schema:DefinedTerm
133 Na201193d82c842408838844aeef6edd9 rdf:first sg:person.015000430571.39
134 rdf:rest N0347883ac8294db1a9cdf9452382ef8d
135 Na3042c13e276440d8e8dfe7ff1c3c7dd schema:name pubmed_id
136 schema:value 23053002
137 rdf:type schema:PropertyValue
138 Na7251b2978c449299c06c813394d1eb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Female
140 rdf:type schema:DefinedTerm
141 Nac62f13d4c8c41c18e7486c5cbdb43d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Middle Aged
143 rdf:type schema:DefinedTerm
144 Naf9d43c9a4b04b88a2a21f7160b56db8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Male
146 rdf:type schema:DefinedTerm
147 Nb851756e100841d9b28654abb9e7fe84 rdf:first sg:person.01336043533.59
148 rdf:rest N0acff9c71c4d4948b590bc0205cab507
149 Nc078b9acf43040329d764d413601f4fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Image Interpretation, Computer-Assisted
151 rdf:type schema:DefinedTerm
152 Nd058eed206df497984b8dbd1d8886810 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Reproducibility of Results
154 rdf:type schema:DefinedTerm
155 Ne61700464f5b42a9b6fce4cd7603d9bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Algorithms
157 rdf:type schema:DefinedTerm
158 Ned63bd220fd1422587dc667ab8e08a3e schema:volumeNumber 55
159 rdf:type schema:PublicationVolume
160 Nf22edcf6f9b04dd7a3360b82b2272acb schema:name dimensions_id
161 schema:value pub.1038853980
162 rdf:type schema:PropertyValue
163 Nf7b23b93b63a4c59b8a476db67a5d417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Image Enhancement
165 rdf:type schema:DefinedTerm
166 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
167 schema:name Medical and Health Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
170 schema:name Clinical Sciences
171 rdf:type schema:DefinedTerm
172 sg:journal.1055404 schema:issn 0028-3940
173 1432-1920
174 schema:name Neuroradiology
175 rdf:type schema:Periodical
176 sg:person.01225654353.06 schema:affiliation https://www.grid.ac/institutes/grid.267500.6
177 schema:familyName Ishigame
178 schema:givenName Keiichi
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225654353.06
180 rdf:type schema:Person
181 sg:person.01336043533.59 schema:affiliation https://www.grid.ac/institutes/grid.267500.6
182 schema:familyName Fatima
183 schema:givenName Zareen
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336043533.59
185 rdf:type schema:Person
186 sg:person.01364365631.59 schema:affiliation https://www.grid.ac/institutes/grid.267500.6
187 schema:familyName Araki
188 schema:givenName Tsutomu
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364365631.59
190 rdf:type schema:Person
191 sg:person.015000430571.39 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
192 schema:familyName Yagi
193 schema:givenName Kazuo
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000430571.39
195 rdf:type schema:Person
196 sg:person.0605715067.44 schema:affiliation https://www.grid.ac/institutes/grid.267500.6
197 schema:familyName Motosugi
198 schema:givenName Utaroh
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605715067.44
200 rdf:type schema:Person
201 sg:person.0764361461.98 schema:affiliation https://www.grid.ac/institutes/grid.258269.2
202 schema:familyName Hori
203 schema:givenName Masaaki
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764361461.98
205 rdf:type schema:Person
206 sg:person.0775001233.92 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
207 schema:familyName Onodera
208 schema:givenName Toshiyuki
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775001233.92
210 rdf:type schema:Person
211 sg:pub.10.1007/bf03323607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049905785
212 https://doi.org/10.1007/bf03323607
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00330-002-1549-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075222260
215 https://doi.org/10.1007/s00330-002-1549-1
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1074659659 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1074737827 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1074737828 schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1074751036 schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1074999042 schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1074999052 schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1082607831 schema:CreativeWork
224 https://doi.org/10.1002/(sici)1522-2594(200002)43:2<191::aid-mrm5>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013316806
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/1522-2594(200011)44:5<713::aid-mrm9>3.0.co;2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028276580
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/cne.10714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023186894
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/mrm.10040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022976398
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/mrm.21563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041364045
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/nbm.778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027419659
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.acra.2011.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032749461
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.mri.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032216308
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.mri.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023756419
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.neurobiolaging.2004.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046065302
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.neurobiolaging.2008.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051497422
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.neuroimage.2003.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016225406
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s0014-4886(03)00274-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026892687
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s0022-510x(02)00297-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011772340
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s0197-4580(01)00318-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033220393
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1093/brain/awn265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010104565
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/j.1552-6569.2011.00596.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025487294
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1148/radiol.2273020721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021647448
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1159/000057698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023124805
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1161/01.str.17.6.1090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051359062
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1212/01.wnl.0000194256.15247.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064347769
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1258/ar.2011.110226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078473572
267 rdf:type schema:CreativeWork
268 https://doi.org/10.2214/ajr.149.2.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069314423
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2214/ajr.175.2.1750425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323379
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2463/mrms.9.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004013428
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.258269.2 schema:alternateName Juntendo University
275 schema:name Department of Radiology, School of Medicine, Juntendo University, 2-1-1 Hongo, 113-8421, Bunkyō, Tokyo, Japan
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.265074.2 schema:alternateName Tokyo Metropolitan University
278 schema:name Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-oku, 116-8551, Arakawa, Tokyo, Japan
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.267500.6 schema:alternateName University of Yamanashi
281 schema:name Department of Radiology, University of Yamanashi, 1110 Shimokato, 409-3898, Chūō, Yamanashi, Japan
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...