Dihedral semigroups, their defining relations and an application to describing knot semigroups of rational links View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Alexei Vernitski, Laila Tunsi, Colette Ponchel, Alexei Lisitsa

ABSTRACT

It is known that a knot (link) is rational if and only if its π-orbifold group is dihedral. A semigroup version of this result has been formulated as a conjecture. Working towards proving the conjecture, we describe certain semigroups associated with twist links, clarify how these semigroups are related to dihedral groups and find defining relations of these semigroups. More... »

PAGES

75-86

References to SciGraph publications

  • 1989-06. The π-orbifold group of a link in MATHEMATISCHE ZEITSCHRIFT
  • 1996. Automated Deduction in Equational Logic and Cubic Curves in NONE
  • 2017. Automated Reasoning for Knot Semigroups and  $$\pi $$ π -orbifold Groups of Knots in MATHEMATICAL ASPECTS OF COMPUTER AND INFORMATION SCIENCES
  • 2014. Detecting Unknots via Equational Reasoning, I: Exploration in INTELLIGENT COMPUTER MATHEMATICS
  • 2015. A Combinatorial Approach to Knot Recognition in EMBRACING GLOBAL COMPUTING IN EMERGING ECONOMIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00233-018-9918-5

    DOI

    http://dx.doi.org/10.1007/s00233-018-9918-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100464772


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Essex", 
              "id": "https://www.grid.ac/institutes/grid.8356.8", 
              "name": [
                "Department of Mathematical Sciences, University of Essex, Colchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vernitski", 
            "givenName": "Alexei", 
            "id": "sg:person.012277012235.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277012235.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tripoli", 
              "id": "https://www.grid.ac/institutes/grid.411306.1", 
              "name": [
                "Mathematical Department, Tripoli University, Tripoli, Libya"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tunsi", 
            "givenName": "Laila", 
            "id": "sg:person.014241137133.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241137133.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
              "id": "https://www.grid.ac/institutes/grid.435013.0", 
              "name": [
                "INSA de Rouen, Saint-\u00c9tienne-du-Rouvray, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ponchel", 
            "givenName": "Colette", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Liverpool", 
              "id": "https://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Department of Computer Science, University of Liverpool, Liverpool, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lisitsa", 
            "givenName": "Alexei", 
            "id": "sg:person.011014301745.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014301745.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-25043-4_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001919613", 
              "https://doi.org/10.1007/978-3-319-25043-4_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020177126", 
              "https://doi.org/10.1007/bf01230281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020177126", 
              "https://doi.org/10.1007/bf01230281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-08434-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052768076", 
              "https://doi.org/10.1007/978-3-319-08434-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218216592000203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062966969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-72453-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099729327", 
              "https://doi.org/10.1007/978-3-319-72453-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109702754", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61398-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109702754", 
              "https://doi.org/10.1007/3-540-61398-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61398-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109702754", 
              "https://doi.org/10.1007/3-540-61398-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61398-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109702754", 
              "https://doi.org/10.1007/3-540-61398-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08", 
        "datePublishedReg": "2018-08-01", 
        "description": "It is known that a knot (link) is rational if and only if its \u03c0-orbifold group is dihedral. A semigroup version of this result has been formulated as a conjecture. Working towards proving the conjecture, we describe certain semigroups associated with twist links, clarify how these semigroups are related to dihedral groups and find defining relations of these semigroups.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00233-018-9918-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136094", 
            "issn": [
              "0037-1912", 
              "1432-2137"
            ], 
            "name": "Semigroup Forum", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "97"
          }
        ], 
        "name": "Dihedral semigroups, their defining relations and an application to describing knot semigroups of rational links", 
        "pagination": "75-86", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "add38b8acf75b5b66c113a07154b78fe699d0fa8b1156e0157d4affa2c202f8a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00233-018-9918-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100464772"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00233-018-9918-5", 
          "https://app.dimensions.ai/details/publication/pub.1100464772"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000603.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00233-018-9918-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00233-018-9918-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00233-018-9918-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00233-018-9918-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00233-018-9918-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00233-018-9918-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0dca4bba53b24b10996150dac58d129e
    4 schema:citation sg:pub.10.1007/3-540-61398-6
    5 sg:pub.10.1007/978-3-319-08434-3_7
    6 sg:pub.10.1007/978-3-319-25043-4_7
    7 sg:pub.10.1007/978-3-319-72453-9_1
    8 sg:pub.10.1007/bf01230281
    9 https://app.dimensions.ai/details/publication/pub.1109702754
    10 https://doi.org/10.1142/s0218216592000203
    11 schema:datePublished 2018-08
    12 schema:datePublishedReg 2018-08-01
    13 schema:description It is known that a knot (link) is rational if and only if its π-orbifold group is dihedral. A semigroup version of this result has been formulated as a conjecture. Working towards proving the conjecture, we describe certain semigroups associated with twist links, clarify how these semigroups are related to dihedral groups and find defining relations of these semigroups.
    14 schema:genre research_article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N02bf174f4c4e443f944263631fedcd82
    18 N3e7efbe7957f4254aa6c6d0a940da52c
    19 sg:journal.1136094
    20 schema:name Dihedral semigroups, their defining relations and an application to describing knot semigroups of rational links
    21 schema:pagination 75-86
    22 schema:productId N0af52948fe9e46bfb7c8e09c6487312f
    23 N23118be4556a413b924191d8bd254740
    24 N78e1a6936e1a4a2b967bfc497726eed6
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100464772
    26 https://doi.org/10.1007/s00233-018-9918-5
    27 schema:sdDatePublished 2019-04-10T15:14
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N1628fcf0c3af4f279d3caea9b5adc7b5
    30 schema:url http://link.springer.com/10.1007/s00233-018-9918-5
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset articles
    33 rdf:type schema:ScholarlyArticle
    34 N02bf174f4c4e443f944263631fedcd82 schema:issueNumber 1
    35 rdf:type schema:PublicationIssue
    36 N0af52948fe9e46bfb7c8e09c6487312f schema:name readcube_id
    37 schema:value add38b8acf75b5b66c113a07154b78fe699d0fa8b1156e0157d4affa2c202f8a
    38 rdf:type schema:PropertyValue
    39 N0dca4bba53b24b10996150dac58d129e rdf:first sg:person.012277012235.36
    40 rdf:rest N8a0a3947333544ecb92d95efd088e6e4
    41 N1628fcf0c3af4f279d3caea9b5adc7b5 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N23118be4556a413b924191d8bd254740 schema:name doi
    44 schema:value 10.1007/s00233-018-9918-5
    45 rdf:type schema:PropertyValue
    46 N2ab983f7932c4ea0a3688a1f538606a6 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
    47 schema:familyName Ponchel
    48 schema:givenName Colette
    49 rdf:type schema:Person
    50 N3e7efbe7957f4254aa6c6d0a940da52c schema:volumeNumber 97
    51 rdf:type schema:PublicationVolume
    52 N78e1a6936e1a4a2b967bfc497726eed6 schema:name dimensions_id
    53 schema:value pub.1100464772
    54 rdf:type schema:PropertyValue
    55 N8a0a3947333544ecb92d95efd088e6e4 rdf:first sg:person.014241137133.50
    56 rdf:rest Nd68aa8e745014ed2bd561a930f961c58
    57 Nd68aa8e745014ed2bd561a930f961c58 rdf:first N2ab983f7932c4ea0a3688a1f538606a6
    58 rdf:rest Ne0f35ee5b62c42f9854d1ec601c7778a
    59 Ne0f35ee5b62c42f9854d1ec601c7778a rdf:first sg:person.011014301745.31
    60 rdf:rest rdf:nil
    61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Mathematical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Pure Mathematics
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1136094 schema:issn 0037-1912
    68 1432-2137
    69 schema:name Semigroup Forum
    70 rdf:type schema:Periodical
    71 sg:person.011014301745.31 schema:affiliation https://www.grid.ac/institutes/grid.10025.36
    72 schema:familyName Lisitsa
    73 schema:givenName Alexei
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011014301745.31
    75 rdf:type schema:Person
    76 sg:person.012277012235.36 schema:affiliation https://www.grid.ac/institutes/grid.8356.8
    77 schema:familyName Vernitski
    78 schema:givenName Alexei
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012277012235.36
    80 rdf:type schema:Person
    81 sg:person.014241137133.50 schema:affiliation https://www.grid.ac/institutes/grid.411306.1
    82 schema:familyName Tunsi
    83 schema:givenName Laila
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241137133.50
    85 rdf:type schema:Person
    86 sg:pub.10.1007/3-540-61398-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109702754
    87 https://doi.org/10.1007/3-540-61398-6
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-3-319-08434-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052768076
    90 https://doi.org/10.1007/978-3-319-08434-3_7
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-3-319-25043-4_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001919613
    93 https://doi.org/10.1007/978-3-319-25043-4_7
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-3-319-72453-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099729327
    96 https://doi.org/10.1007/978-3-319-72453-9_1
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01230281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020177126
    99 https://doi.org/10.1007/bf01230281
    100 rdf:type schema:CreativeWork
    101 https://app.dimensions.ai/details/publication/pub.1109702754 schema:CreativeWork
    102 https://doi.org/10.1142/s0218216592000203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062966969
    103 rdf:type schema:CreativeWork
    104 https://www.grid.ac/institutes/grid.10025.36 schema:alternateName University of Liverpool
    105 schema:name Department of Computer Science, University of Liverpool, Liverpool, UK
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.411306.1 schema:alternateName University of Tripoli
    108 schema:name Mathematical Department, Tripoli University, Tripoli, Libya
    109 rdf:type schema:Organization
    110 https://www.grid.ac/institutes/grid.435013.0 schema:alternateName Institut National des Sciences Appliquées de Rouen
    111 schema:name INSA de Rouen, Saint-Étienne-du-Rouvray, France
    112 rdf:type schema:Organization
    113 https://www.grid.ac/institutes/grid.8356.8 schema:alternateName University of Essex
    114 schema:name Department of Mathematical Sciences, University of Essex, Colchester, UK
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...