The Effect of Dextran Sulfate—as Model Glycosaminoglycan Analogue—on Membrane Lipids: DPPC, Cholesterol, and DPPC–Cholesterol Mixture. The Monolayer Study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Katarzyna Makyła-Juzak, Anna Chachaj-Brekiesz, Patrycja Dynarowicz-Latka, Paweł Dąbczyński, Joanna Zemla

ABSTRACT

Glycosaminoglycans (GAGs) are essential components of the extracellular matrices (ECMs) located on the outer surface of cellular membranes. They belong to the group of polysaccharides involved in diverse biological processes acting on the surface and across natural lipid membranes. Recently, particular attention has been focused on possible role of GAGs in the amyloid deposits. The amyloid formation is related to a disorder in protein folding, causing that soluble-in normal conditions-peptides become deposited extracellularly as insoluble fibrils, impairing tissue structure and its function. One of the hypothesis holds that GAGs may inhibit amyloid formation by interacting with the lipid membrane by blocking the accumulation of protein aggregates on the membrane surface. Although the biophysical properties of GAGs are described rather well, little is known about the nature of association between these polysaccharides and components of natural cell membranes. Therefore, a study of GAGs influence on membrane lipids is of particular importance. The aim of the present work is to get insight into the effect of hydrophilic dextran sulfate (DS)-that can be considered as GAG analogue-on membrane lipids organization. This study was based on examining interactions between DS sodium salt of molecular weight equal to about 40 kDa (DS40), dissolved in water subphase, and a model membrane, mimicked as Langmuir monolayer, formed by representative natural membrane lipids: cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as well as their mixtures. Due to the fact that calcium ions in excess may accumulate in the lipid membrane, attracting high molecular weight molecules to their surface, the influence of calcium ions present in the subphase on the DS40 activity has also been examined. It has been found that negatively charged DS, forming a sublayer underneath the monolayer, barely interacts with membrane lipids; however, in the presence of calcium ions the electrostatic interactions between DS40 and lipid membrane are significantly enhanced, leading to the formation of network-like crystalline structures at the surface of model membrane, which can prevent incorporation and interaction with other extracellular molecules, e.g., proteins. More... »

PAGES

641-651

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00232-018-0041-z

DOI

http://dx.doi.org/10.1007/s00232-018-0041-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105707379

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30030544


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jagiellonian University", 
          "id": "https://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "Department of General Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maky\u0142a-Juzak", 
        "givenName": "Katarzyna", 
        "id": "sg:person.01256247715.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256247715.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jagiellonian University", 
          "id": "https://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "Department of General Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chachaj-Brekiesz", 
        "givenName": "Anna", 
        "id": "sg:person.01065352575.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065352575.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jagiellonian University", 
          "id": "https://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "Department of General Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dynarowicz-Latka", 
        "givenName": "Patrycja", 
        "id": "sg:person.0733135451.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733135451.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jagiellonian University", 
          "id": "https://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "Institute of Physics, Jagiellonian University, \u0141ojasiewicza 11, 30-348, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u0105bczy\u0144ski", 
        "givenName": "Pawe\u0142", 
        "id": "sg:person.010445757125.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445757125.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nuclear Physics Polish Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418860.3", 
          "name": [
            "Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zemla", 
        "givenName": "Joanna", 
        "id": "sg:person.01360376331.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360376331.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3109/13506120309041728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002539521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-8686(98)00064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003114323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-7765(02)00099-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003870949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3sm26906j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004254784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-7765(01)00209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004981222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.1437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006440386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.153791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008295346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1303304110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010981019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cis.2014.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012770354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejps.2007.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015078139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2005.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016167480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2736(99)00203-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016187409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200110138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025149111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2432410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025242233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-393-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303734", 
          "https://doi.org/10.1007/978-1-59745-393-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-393-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025303734", 
          "https://doi.org/10.1007/978-1-59745-393-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00024677-200605040-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026639842", 
          "https://doi.org/10.2165/00024677-200605040-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp9000662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028566162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp9000662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028566162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelechem.2006.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029593237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013282015121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029625192", 
          "https://doi.org/10.1023/a:1013282015121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3770-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031705140", 
          "https://doi.org/10.1007/978-1-4615-3770-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3770-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031705140", 
          "https://doi.org/10.1007/978-1-4615-3770-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(75)90088-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033827450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp982637z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035922568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp982637z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035922568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2736(98)00199-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039474627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20020201)41:3<390::aid-anie390>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040572878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.108.132076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042041172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgm.522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042316525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-8981(99)00250-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042538885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042560646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jctb.1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042560646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1937-6448(09)76003-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043805811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(04)00084-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044185935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.04887005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044301056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpc.2008.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045019922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m007940200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046120697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2015.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047226193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules20022510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048659160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules20022510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048659160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(75)90350-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049185718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2736(75)90350-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049185718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2012.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049246519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.22.12349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051124946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00529a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055179602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052485p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052485p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp066950+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056069065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp066950+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056069065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la001617x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056142160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la001617x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056142160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la046825u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056146800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la046825u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056146800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.tea.2008.0405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059315162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920311795860188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069179392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/187153007780832118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069223301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077102375", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083005132", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphyslip.2017.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084065520"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Glycosaminoglycans (GAGs) are essential components of the extracellular matrices (ECMs) located on the outer surface of cellular membranes. They belong to the group of polysaccharides involved in diverse biological processes acting on the surface and across natural lipid membranes. Recently, particular attention has been focused on possible role of GAGs in the amyloid deposits. The amyloid formation is related to a disorder in protein folding, causing that soluble-in normal conditions-peptides become deposited extracellularly as insoluble fibrils, impairing tissue structure and its function. One of the hypothesis holds that GAGs may inhibit amyloid formation by interacting with the lipid membrane by blocking the accumulation of protein aggregates on the membrane surface. Although the biophysical properties of GAGs are described rather well, little is known about the nature of association between these polysaccharides and components of natural cell membranes. Therefore, a study of GAGs influence on membrane lipids is of particular importance. The aim of the present work is to get insight into the effect of hydrophilic dextran sulfate (DS)-that can be considered as GAG analogue-on membrane lipids organization. This study was based on examining interactions between DS sodium salt of molecular weight equal to about 40\u00a0kDa (DS40), dissolved in water subphase, and a model membrane, mimicked as Langmuir monolayer, formed by representative natural membrane lipids: cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as well as their mixtures. Due to the fact that calcium ions in excess may accumulate in the lipid membrane, attracting high molecular weight molecules to their surface, the influence of calcium ions present in the subphase on the DS40 activity has also been examined. It has been found that negatively charged DS, forming a sublayer underneath the monolayer, barely interacts with membrane lipids; however, in the presence of calcium ions the electrostatic interactions between DS40 and lipid membrane are significantly enhanced, leading to the formation of network-like crystalline structures at the surface of model membrane, which can prevent incorporation and interaction with other extracellular molecules, e.g., proteins.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00232-018-0041-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1012006", 
        "issn": [
          "0022-2631", 
          "1432-1424"
        ], 
        "name": "The Journal of Membrane Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "251"
      }
    ], 
    "name": "The Effect of Dextran Sulfate\u2014as Model Glycosaminoglycan Analogue\u2014on Membrane Lipids: DPPC, Cholesterol, and DPPC\u2013Cholesterol Mixture. The Monolayer Study", 
    "pagination": "641-651", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86ab1987e0c577e9478151016e5ded10b5939dd5744774d891722e114ebd735c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30030544"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0211301"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00232-018-0041-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105707379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00232-018-0041-z", 
      "https://app.dimensions.ai/details/publication/pub.1105707379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000281_0000000281/records_9827_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00232-018-0041-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00232-018-0041-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00232-018-0041-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00232-018-0041-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00232-018-0041-z'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00232-018-0041-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc8b9f5a99daf4a0c85eddd7c2244eefd
4 schema:citation sg:pub.10.1007/978-1-4615-3770-0_3
5 sg:pub.10.1007/978-1-59745-393-6_2
6 sg:pub.10.1023/a:1013282015121
7 sg:pub.10.2165/00024677-200605040-00002
8 https://app.dimensions.ai/details/publication/pub.1077102375
9 https://app.dimensions.ai/details/publication/pub.1083005132
10 https://doi.org/10.1002/1521-3773(20020201)41:3<390::aid-anie390>3.0.co;2-b
11 https://doi.org/10.1002/jctb.1322
12 https://doi.org/10.1002/jgm.522
13 https://doi.org/10.1002/path.1437
14 https://doi.org/10.1016/0005-2736(75)90350-8
15 https://doi.org/10.1016/0021-9797(75)90088-0
16 https://doi.org/10.1016/j.bpc.2008.11.011
17 https://doi.org/10.1016/j.chemphyslip.2017.03.005
18 https://doi.org/10.1016/j.cis.2014.02.013
19 https://doi.org/10.1016/j.conb.2005.01.014
20 https://doi.org/10.1016/j.ejps.2007.06.003
21 https://doi.org/10.1016/j.jelechem.2006.01.024
22 https://doi.org/10.1016/j.jmb.2012.02.007
23 https://doi.org/10.1016/j.tsf.2015.09.047
24 https://doi.org/10.1016/s0001-8686(98)00064-5
25 https://doi.org/10.1016/s0005-2736(98)00199-0
26 https://doi.org/10.1016/s0005-2736(99)00203-5
27 https://doi.org/10.1016/s0009-8981(99)00250-8
28 https://doi.org/10.1016/s0896-6273(04)00084-4
29 https://doi.org/10.1016/s0927-7765(01)00209-0
30 https://doi.org/10.1016/s0927-7765(02)00099-1
31 https://doi.org/10.1016/s1937-6448(09)76003-4
32 https://doi.org/10.1021/bi00529a007
33 https://doi.org/10.1021/jp052485p
34 https://doi.org/10.1021/jp066950+
35 https://doi.org/10.1021/jp982637z
36 https://doi.org/10.1021/la001617x
37 https://doi.org/10.1021/la046825u
38 https://doi.org/10.1021/mp9000662
39 https://doi.org/10.1039/c3sm26906j
40 https://doi.org/10.1063/1.2432410
41 https://doi.org/10.1073/pnas.1303304110
42 https://doi.org/10.1073/pnas.93.22.12349
43 https://doi.org/10.1074/jbc.m007940200
44 https://doi.org/10.1074/jbc.m110.153791
45 https://doi.org/10.1083/jcb.200110138
46 https://doi.org/10.1089/ten.tea.2008.0405
47 https://doi.org/10.1110/ps.04887005
48 https://doi.org/10.1529/biophysj.108.132076
49 https://doi.org/10.2174/138920311795860188
50 https://doi.org/10.2174/187153007780832118
51 https://doi.org/10.3109/13506120309041728
52 https://doi.org/10.3390/molecules20022510
53 schema:datePublished 2018-12
54 schema:datePublishedReg 2018-12-01
55 schema:description Glycosaminoglycans (GAGs) are essential components of the extracellular matrices (ECMs) located on the outer surface of cellular membranes. They belong to the group of polysaccharides involved in diverse biological processes acting on the surface and across natural lipid membranes. Recently, particular attention has been focused on possible role of GAGs in the amyloid deposits. The amyloid formation is related to a disorder in protein folding, causing that soluble-in normal conditions-peptides become deposited extracellularly as insoluble fibrils, impairing tissue structure and its function. One of the hypothesis holds that GAGs may inhibit amyloid formation by interacting with the lipid membrane by blocking the accumulation of protein aggregates on the membrane surface. Although the biophysical properties of GAGs are described rather well, little is known about the nature of association between these polysaccharides and components of natural cell membranes. Therefore, a study of GAGs influence on membrane lipids is of particular importance. The aim of the present work is to get insight into the effect of hydrophilic dextran sulfate (DS)-that can be considered as GAG analogue-on membrane lipids organization. This study was based on examining interactions between DS sodium salt of molecular weight equal to about 40 kDa (DS40), dissolved in water subphase, and a model membrane, mimicked as Langmuir monolayer, formed by representative natural membrane lipids: cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as well as their mixtures. Due to the fact that calcium ions in excess may accumulate in the lipid membrane, attracting high molecular weight molecules to their surface, the influence of calcium ions present in the subphase on the DS40 activity has also been examined. It has been found that negatively charged DS, forming a sublayer underneath the monolayer, barely interacts with membrane lipids; however, in the presence of calcium ions the electrostatic interactions between DS40 and lipid membrane are significantly enhanced, leading to the formation of network-like crystalline structures at the surface of model membrane, which can prevent incorporation and interaction with other extracellular molecules, e.g., proteins.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N7cc870404db7454d896e8cbc9e54cd23
60 Nb13d7bdc7fb54743bb12a807d2c026f3
61 sg:journal.1012006
62 schema:name The Effect of Dextran Sulfate—as Model Glycosaminoglycan Analogue—on Membrane Lipids: DPPC, Cholesterol, and DPPC–Cholesterol Mixture. The Monolayer Study
63 schema:pagination 641-651
64 schema:productId N0fcb15f29c1348cba9b9412e57fb6718
65 N87fed3c2f0df4dc2b23ebff022c1676a
66 N91ac44a5b7a74d559215eaf13cd30332
67 Na46706bd3aaf413e8c5f9cd5f18d6dd7
68 Nf16774d8d2f74330a759db44a1eda289
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105707379
70 https://doi.org/10.1007/s00232-018-0041-z
71 schema:sdDatePublished 2019-04-11T08:18
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N9a5c69d18446438e929d1fbaea2fc264
74 schema:url https://link.springer.com/10.1007%2Fs00232-018-0041-z
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0fcb15f29c1348cba9b9412e57fb6718 schema:name pubmed_id
79 schema:value 30030544
80 rdf:type schema:PropertyValue
81 N12b386459b7544dbad953baa930339c3 rdf:first sg:person.0733135451.72
82 rdf:rest N6d6085c63fd9417a9271e32d6e6d82a1
83 N47dea557462748df83b28230ec560f5b rdf:first sg:person.01360376331.47
84 rdf:rest rdf:nil
85 N63b3220e6fd2483da3d64e68340e4c4b rdf:first sg:person.01065352575.43
86 rdf:rest N12b386459b7544dbad953baa930339c3
87 N6d6085c63fd9417a9271e32d6e6d82a1 rdf:first sg:person.010445757125.07
88 rdf:rest N47dea557462748df83b28230ec560f5b
89 N7cc870404db7454d896e8cbc9e54cd23 schema:volumeNumber 251
90 rdf:type schema:PublicationVolume
91 N87fed3c2f0df4dc2b23ebff022c1676a schema:name doi
92 schema:value 10.1007/s00232-018-0041-z
93 rdf:type schema:PropertyValue
94 N91ac44a5b7a74d559215eaf13cd30332 schema:name readcube_id
95 schema:value 86ab1987e0c577e9478151016e5ded10b5939dd5744774d891722e114ebd735c
96 rdf:type schema:PropertyValue
97 N9a5c69d18446438e929d1fbaea2fc264 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Na46706bd3aaf413e8c5f9cd5f18d6dd7 schema:name nlm_unique_id
100 schema:value 0211301
101 rdf:type schema:PropertyValue
102 Nb13d7bdc7fb54743bb12a807d2c026f3 schema:issueNumber 5-6
103 rdf:type schema:PublicationIssue
104 Nc8b9f5a99daf4a0c85eddd7c2244eefd rdf:first sg:person.01256247715.69
105 rdf:rest N63b3220e6fd2483da3d64e68340e4c4b
106 Nf16774d8d2f74330a759db44a1eda289 schema:name dimensions_id
107 schema:value pub.1105707379
108 rdf:type schema:PropertyValue
109 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
110 schema:name Biological Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
113 schema:name Biochemistry and Cell Biology
114 rdf:type schema:DefinedTerm
115 sg:journal.1012006 schema:issn 0022-2631
116 1432-1424
117 schema:name The Journal of Membrane Biology
118 rdf:type schema:Periodical
119 sg:person.010445757125.07 schema:affiliation https://www.grid.ac/institutes/grid.5522.0
120 schema:familyName Dąbczyński
121 schema:givenName Paweł
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010445757125.07
123 rdf:type schema:Person
124 sg:person.01065352575.43 schema:affiliation https://www.grid.ac/institutes/grid.5522.0
125 schema:familyName Chachaj-Brekiesz
126 schema:givenName Anna
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065352575.43
128 rdf:type schema:Person
129 sg:person.01256247715.69 schema:affiliation https://www.grid.ac/institutes/grid.5522.0
130 schema:familyName Makyła-Juzak
131 schema:givenName Katarzyna
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256247715.69
133 rdf:type schema:Person
134 sg:person.01360376331.47 schema:affiliation https://www.grid.ac/institutes/grid.418860.3
135 schema:familyName Zemla
136 schema:givenName Joanna
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360376331.47
138 rdf:type schema:Person
139 sg:person.0733135451.72 schema:affiliation https://www.grid.ac/institutes/grid.5522.0
140 schema:familyName Dynarowicz-Latka
141 schema:givenName Patrycja
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733135451.72
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-4615-3770-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031705140
145 https://doi.org/10.1007/978-1-4615-3770-0_3
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-1-59745-393-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025303734
148 https://doi.org/10.1007/978-1-59745-393-6_2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/a:1013282015121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029625192
151 https://doi.org/10.1023/a:1013282015121
152 rdf:type schema:CreativeWork
153 sg:pub.10.2165/00024677-200605040-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026639842
154 https://doi.org/10.2165/00024677-200605040-00002
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1077102375 schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1083005132 schema:CreativeWork
158 https://doi.org/10.1002/1521-3773(20020201)41:3<390::aid-anie390>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1040572878
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/jctb.1322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042560646
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/jgm.522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042316525
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/path.1437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006440386
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/0005-2736(75)90350-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049185718
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0021-9797(75)90088-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033827450
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.bpc.2008.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045019922
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.chemphyslip.2017.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084065520
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cis.2014.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012770354
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.conb.2005.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016167480
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ejps.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015078139
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.jelechem.2006.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029593237
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jmb.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049246519
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tsf.2015.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047226193
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0001-8686(98)00064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003114323
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0005-2736(98)00199-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039474627
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0005-2736(99)00203-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016187409
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0009-8981(99)00250-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042538885
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0896-6273(04)00084-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044185935
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0927-7765(01)00209-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004981222
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0927-7765(02)00099-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003870949
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s1937-6448(09)76003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043805811
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/bi00529a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055179602
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/jp052485p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056061328
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/jp066950+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1056069065
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/jp982637z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035922568
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/la001617x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056142160
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/la046825u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056146800
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/mp9000662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028566162
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1039/c3sm26906j schema:sameAs https://app.dimensions.ai/details/publication/pub.1004254784
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.2432410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242233
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1073/pnas.1303304110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010981019
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1073/pnas.93.22.12349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051124946
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1074/jbc.m007940200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046120697
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1074/jbc.m110.153791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295346
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1083/jcb.200110138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025149111
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1089/ten.tea.2008.0405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059315162
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1110/ps.04887005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044301056
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1529/biophysj.108.132076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042041172
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2174/138920311795860188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069179392
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2174/187153007780832118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069223301
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3109/13506120309041728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002539521
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3390/molecules20022510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048659160
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.418860.3 schema:alternateName Institute of Nuclear Physics Polish Academy of Sciences
245 schema:name Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.5522.0 schema:alternateName Jagiellonian University
248 schema:name Department of General Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
249 Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...