An optimization of water transport through polyurethane silica-nanocomposite membrane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Omar Almahmoud, Hyo-Sun Kim, Young-Soo Seo, Seok Ho Yoon, Tae-Youl Choi

ABSTRACT

Analysis of water transport through polyurethane silica nano-composite membranes were performed by numerical simulation and experiment. Simulation work was performed using a finite element analysis (FEA) software, COMSOL Multiphysics. Experimental work was performed to validate the simulation model. Through simulation we suggest the minimum membrane-to-membrane distance for stacked membranes to be 2-mm to avoid the membrane concentration polarization effect. The method used to create a concentration gradient between the membrane feed side (humid air) and the membrane permeate side (connected to vacuum) involved with creating a pressure gradient. Water vapor pressure gradient creates a concentration gradient which drives water vapor molecules to diffuse from the membrane feed side to the membrane permeate side. Different membrane configurations including rectangular parallel membranes, perforated cylinder with circular membranes, perforated group of cylinders with circular membranes, and perforated cylinder with curved rectangular membranes were compared in terms of water vapor removal from humid air while connecting all membrane configurations to 47-mm vacuum port. The parallel 22 membranes exhibited maximum water removal. Based on the total membrane area, water vapor removal was maximized at the maximum membrane effective area in contact with humid area. The maximum total water removal was obtained for the 11 cassettes with 22 rectangular membranes with a value of 142 g/(m2·s) while the relative humidity dropped from 60% at the duct inlet to 25.6% at the duct outlet. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-019-02613-1

DOI

http://dx.doi.org/10.1007/s00231-019-02613-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113170378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Almahmoud", 
        "givenName": "Omar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sejong University", 
          "id": "https://www.grid.ac/institutes/grid.263333.4", 
          "name": [
            "Department of Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyo-Sun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sejong University", 
          "id": "https://www.grid.ac/institutes/grid.263333.4", 
          "name": [
            "Department of Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Young-Soo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Machinery and Materials", 
          "id": "https://www.grid.ac/institutes/grid.410901.d", 
          "name": [
            "Department of Thermal Systems, Korea Institute of Machinery and Materials, Daejeon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Seok Ho", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Tae-Youl", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004642120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008852596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2010.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009135663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2007.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010403233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cja.2015.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019577217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2010.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021792121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0376-7388(00)00680-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023664782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7788(98)00016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023765285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2013.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024105010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2011-5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118522318.emst133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037919157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2013.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038050976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.seppur.2006.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040421113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2010.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041519718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.12.264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2009.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042920896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2008.06.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046667608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.10.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109507375", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109507375", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109507375", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109507375", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109507375", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "Analysis of water transport through polyurethane silica nano-composite membranes were performed by numerical simulation and experiment. Simulation work was performed using a finite element analysis (FEA) software, COMSOL Multiphysics. Experimental work was performed to validate the simulation model. Through simulation we suggest the minimum membrane-to-membrane distance for stacked membranes to be 2-mm to avoid the membrane concentration polarization effect. The method used to create a concentration gradient between the membrane feed side (humid air) and the membrane permeate side (connected to vacuum) involved with creating a pressure gradient. Water vapor pressure gradient creates a concentration gradient which drives water vapor molecules to diffuse from the membrane feed side to the membrane permeate side. Different membrane configurations including rectangular parallel membranes, perforated cylinder with circular membranes, perforated group of cylinders with circular membranes, and perforated cylinder with curved rectangular membranes were compared in terms of water vapor removal from humid air while connecting all membrane configurations to 47-mm vacuum port. The parallel 22 membranes exhibited maximum water removal. Based on the total membrane area, water vapor removal was maximized at the maximum membrane effective area in contact with humid area. The maximum total water removal was obtained for the 11 cassettes with 22 rectangular membranes with a value of 142 g/(m2\u00b7s) while the relative humidity dropped from 60% at the duct inlet to 25.6% at the duct outlet.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-019-02613-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }
    ], 
    "name": "An optimization of water transport through polyurethane silica-nanocomposite membrane", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04e93df93c3894c0483ef774c6710c7fd29ada9e8dcc12b45ffdfec46890a311"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-019-02613-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113170378"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-019-02613-1", 
      "https://app.dimensions.ai/details/publication/pub.1113170378"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00231-019-02613-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-019-02613-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-019-02613-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-019-02613-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-019-02613-1'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      44 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-019-02613-1 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N3b0ffe177bc5426daf3034e5015977a1
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109507375
5 https://doi.org/10.1002/9781118522318.emst133
6 https://doi.org/10.1016/j.buildenv.2010.03.011
7 https://doi.org/10.1016/j.cja.2015.04.016
8 https://doi.org/10.1016/j.enbuild.2007.03.007
9 https://doi.org/10.1016/j.enbuild.2010.02.005
10 https://doi.org/10.1016/j.enbuild.2013.02.025
11 https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.025
12 https://doi.org/10.1016/j.memsci.2008.06.046
13 https://doi.org/10.1016/j.memsci.2010.11.012
14 https://doi.org/10.1016/j.rser.2009.07.016
15 https://doi.org/10.1016/j.rser.2013.11.021
16 https://doi.org/10.1016/j.rser.2015.02.038
17 https://doi.org/10.1016/j.rser.2015.10.039
18 https://doi.org/10.1016/j.rser.2015.12.264
19 https://doi.org/10.1016/j.rser.2017.10.067
20 https://doi.org/10.1016/j.seppur.2006.09.021
21 https://doi.org/10.1016/s0376-7388(00)00680-3
22 https://doi.org/10.1016/s0378-7788(98)00016-4
23 https://doi.org/10.2514/6.2011-5260
24 schema:datePublished 2019-04-01
25 schema:datePublishedReg 2019-04-01
26 schema:description Analysis of water transport through polyurethane silica nano-composite membranes were performed by numerical simulation and experiment. Simulation work was performed using a finite element analysis (FEA) software, COMSOL Multiphysics. Experimental work was performed to validate the simulation model. Through simulation we suggest the minimum membrane-to-membrane distance for stacked membranes to be 2-mm to avoid the membrane concentration polarization effect. The method used to create a concentration gradient between the membrane feed side (humid air) and the membrane permeate side (connected to vacuum) involved with creating a pressure gradient. Water vapor pressure gradient creates a concentration gradient which drives water vapor molecules to diffuse from the membrane feed side to the membrane permeate side. Different membrane configurations including rectangular parallel membranes, perforated cylinder with circular membranes, perforated group of cylinders with circular membranes, and perforated cylinder with curved rectangular membranes were compared in terms of water vapor removal from humid air while connecting all membrane configurations to 47-mm vacuum port. The parallel 22 membranes exhibited maximum water removal. Based on the total membrane area, water vapor removal was maximized at the maximum membrane effective area in contact with humid area. The maximum total water removal was obtained for the 11 cassettes with 22 rectangular membranes with a value of 142 g/(m2·s) while the relative humidity dropped from 60% at the duct inlet to 25.6% at the duct outlet.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf sg:journal.1356910
31 schema:name An optimization of water transport through polyurethane silica-nanocomposite membrane
32 schema:pagination 1-9
33 schema:productId N0d2185cc16b946119e8a6dc27b3be1a3
34 N1a003cf0b15e4188acf867795d84a6c4
35 Ncb9a1a4ac7fc4c5a9b656960954db58d
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113170378
37 https://doi.org/10.1007/s00231-019-02613-1
38 schema:sdDatePublished 2019-04-11T14:01
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N44716878ae774e64b39bd4f0778cd59a
41 schema:url https://link.springer.com/10.1007%2Fs00231-019-02613-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0d2185cc16b946119e8a6dc27b3be1a3 schema:name dimensions_id
46 schema:value pub.1113170378
47 rdf:type schema:PropertyValue
48 N1a003cf0b15e4188acf867795d84a6c4 schema:name doi
49 schema:value 10.1007/s00231-019-02613-1
50 rdf:type schema:PropertyValue
51 N31ee388d91754398a74fee400b05dbfd schema:affiliation https://www.grid.ac/institutes/grid.266869.5
52 schema:familyName Choi
53 schema:givenName Tae-Youl
54 rdf:type schema:Person
55 N3b0ffe177bc5426daf3034e5015977a1 rdf:first N5b4866b2128f4721a7e351ca2c32f71d
56 rdf:rest N7410978ebd944021a3f899890380ea8b
57 N44716878ae774e64b39bd4f0778cd59a schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N5b4866b2128f4721a7e351ca2c32f71d schema:affiliation https://www.grid.ac/institutes/grid.266869.5
60 schema:familyName Almahmoud
61 schema:givenName Omar
62 rdf:type schema:Person
63 N6996d874368148a7977705b7f0ec9675 schema:affiliation https://www.grid.ac/institutes/grid.263333.4
64 schema:familyName Kim
65 schema:givenName Hyo-Sun
66 rdf:type schema:Person
67 N7410978ebd944021a3f899890380ea8b rdf:first N6996d874368148a7977705b7f0ec9675
68 rdf:rest Ne95ab1dfc833498fa72378459117734d
69 N9a516c6314cb4f4e81ef777c13e4bf1b schema:affiliation https://www.grid.ac/institutes/grid.263333.4
70 schema:familyName Seo
71 schema:givenName Young-Soo
72 rdf:type schema:Person
73 Nbba1710ea23649cc9e1545aff8e1f108 rdf:first Nf854136f5d55408eb7d3385fe68533fb
74 rdf:rest Nc89f75453b1241f5b57e3b7b9e640a4c
75 Nc89f75453b1241f5b57e3b7b9e640a4c rdf:first N31ee388d91754398a74fee400b05dbfd
76 rdf:rest rdf:nil
77 Ncb9a1a4ac7fc4c5a9b656960954db58d schema:name readcube_id
78 schema:value 04e93df93c3894c0483ef774c6710c7fd29ada9e8dcc12b45ffdfec46890a311
79 rdf:type schema:PropertyValue
80 Ne95ab1dfc833498fa72378459117734d rdf:first N9a516c6314cb4f4e81ef777c13e4bf1b
81 rdf:rest Nbba1710ea23649cc9e1545aff8e1f108
82 Nf854136f5d55408eb7d3385fe68533fb schema:affiliation https://www.grid.ac/institutes/grid.410901.d
83 schema:familyName Yoon
84 schema:givenName Seok Ho
85 rdf:type schema:Person
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1356910 schema:issn 0947-7411
93 1432-1181
94 schema:name Heat and Mass Transfer
95 rdf:type schema:Periodical
96 https://app.dimensions.ai/details/publication/pub.1109507375 schema:CreativeWork
97 https://doi.org/10.1002/9781118522318.emst133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037919157
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.buildenv.2010.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021792121
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.cja.2015.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019577217
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.enbuild.2007.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010403233
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.enbuild.2010.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041519718
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.enbuild.2013.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038050976
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004642120
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.memsci.2008.06.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046667608
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.memsci.2010.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009135663
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.rser.2009.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042920896
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.rser.2013.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024105010
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.rser.2015.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008852596
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.rser.2015.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791138
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.rser.2015.12.264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416425
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.rser.2017.10.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092638078
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.seppur.2006.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040421113
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0376-7388(00)00680-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023664782
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0378-7788(98)00016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023765285
132 rdf:type schema:CreativeWork
133 https://doi.org/10.2514/6.2011-5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559159
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.263333.4 schema:alternateName Sejong University
136 schema:name Department of Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul, South Korea
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
139 schema:name Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX, USA
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.410901.d schema:alternateName Korea Institute of Machinery and Materials
142 schema:name Department of Thermal Systems, Korea Institute of Machinery and Materials, Daejeon, South Korea
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...