Improving thermal response tests with wireline temperature logs to evaluate ground thermal conductivity profiles and groundwater fluxes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-11

AUTHORS

Claude Hugo Koubikana Pambou, Jasmin Raymond, Louis Lamarche

ABSTRACT

A field method was developed to assess subsurface thermal conductivity profiles and groundwater fluxes from manual temperature logs using a wired probe lowered into a U-pipe during the recovery period of a thermal response test (TRT). Temperature and depth were recorded with a wired temperature and pressure data logger, which triggers a water level rise into a U-pipe. Depth correction methods were introduced and validated using subsurface temperature at equilibrium state measured into U-pipe. Wired temperature logs from recovery period after drilling operation were used to evaluate undisturbed subsurface temperature and during a conventional TRT to assess a thermal conductivity profile with approximately 1 m vertical spatial resolution. TRT analysis was improved by combining the infinite line source equation with the temporal superposition principle and slope method. The results reveal zones of higher apparent thermal conductivity identified as fractured zones in which Darcy’s flux has been quantified using the Peclet number analysis. The average subsurface thermal conductivity inferred with this method was 1.79 W m−1 K−1, similar to 1.75 W m−1 K−1 obtained using conventional TRT analysis. The estimated Darcy’s flux in the fracture zones is 3 × 10−9 to 1 × 10−8 m s−1. This method, based on wired temperature profiling along the borehole, provides a new approach using simple equipment and available analytical solutions to obtain more information from conventional TRT analysis. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-018-2532-y

DOI

http://dx.doi.org/10.1007/s00231-018-2532-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111361253


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Scientifique", 
          "id": "https://www.grid.ac/institutes/grid.418084.1", 
          "name": [
            "Institut national de la recherche scientifique, Centre Eau Terre Envrionnement, Qu\u00e9bec, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koubikana Pambou", 
        "givenName": "Claude Hugo", 
        "id": "sg:person.013430611034.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430611034.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Scientifique", 
          "id": "https://www.grid.ac/institutes/grid.418084.1", 
          "name": [
            "Institut national de la recherche scientifique, Centre Eau Terre Envrionnement, Qu\u00e9bec, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raymond", 
        "givenName": "Jasmin", 
        "id": "sg:person.0734422506.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734422506.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole de Technologie Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.459234.d", 
          "name": [
            "\u00c9cole de Technologie Sup\u00e9rieure, D\u00e9partement de g\u00e9nie m\u00e9canique, Montr\u00e9al, Qu\u00e9bec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lamarche", 
        "givenName": "Louis", 
        "id": "sg:person.01362101111.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362101111.74"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.renene.2010.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005892904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010709474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geothermics.2010.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012693862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-002-0295-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013259285", 
          "https://doi.org/10.1007/s00231-002-0295-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s110707082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014520897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2015.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017403878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:narr.0000032647.41046.e7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021276879", 
          "https://doi.org/10.1023/b:narr.0000032647.41046.e7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013wr013939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022074617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023153496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2008.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024693372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2010.00791.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028201305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2012.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033700971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-007-0282-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035057935", 
          "https://doi.org/10.1007/s00231-007-0282-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2015.01.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035700854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-014-3310-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035956762", 
          "https://doi.org/10.1007/s12665-014-3310-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2016.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049754119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geothermics.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049791194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2011.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050530263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/jeeg12.4.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068924619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/hydrology4020021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084435608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017jb014331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086028455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-017-1701-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099706222", 
          "https://doi.org/10.1007/s10040-017-1701-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en11020366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100853230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21278/tof.42si104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103896730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-11", 
    "datePublishedReg": "2019-01-11", 
    "description": "A field method was developed to assess subsurface thermal conductivity profiles and groundwater fluxes from manual temperature logs using a wired probe lowered into a U-pipe during the recovery period of a thermal response test (TRT). Temperature and depth were recorded with a wired temperature and pressure data logger, which triggers a water level rise into a U-pipe. Depth correction methods were introduced and validated using subsurface temperature at equilibrium state measured into U-pipe. Wired temperature logs from recovery period after drilling operation were used to evaluate undisturbed subsurface temperature and during a conventional TRT to assess a thermal conductivity profile with approximately 1 m vertical spatial resolution. TRT analysis was improved by combining the infinite line source equation with the temporal superposition principle and slope method. The results reveal zones of higher apparent thermal conductivity identified as fractured zones in which Darcy\u2019s flux has been quantified using the Peclet number analysis. The average subsurface thermal conductivity inferred with this method was 1.79 W m\u22121 K\u22121, similar to 1.75 W m\u22121 K\u22121 obtained using conventional TRT analysis. The estimated Darcy\u2019s flux in the fracture zones is 3 \u00d7 10\u22129 to 1 \u00d7 10\u22128 m s\u22121. This method, based on wired temperature profiling along the borehole, provides a new approach using simple equipment and available analytical solutions to obtain more information from conventional TRT analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-018-2532-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }
    ], 
    "name": "Improving thermal response tests with wireline temperature logs to evaluate ground thermal conductivity profiles and groundwater fluxes", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "008f91998e5f92a928c7cb0da222b6dd15276bb98561cb745ae7987c162cd11c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-018-2532-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111361253"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-018-2532-y", 
      "https://app.dimensions.ai/details/publication/pub.1111361253"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000317_0000000317/records_116895_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00231-018-2532-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2532-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2532-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2532-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2532-y'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-018-2532-y schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N1b449ce8a4e44c258c55587762ed675c
4 schema:citation sg:pub.10.1007/s00231-002-0295-x
5 sg:pub.10.1007/s00231-007-0282-3
6 sg:pub.10.1007/s10040-017-1701-2
7 sg:pub.10.1007/s12665-014-3310-x
8 sg:pub.10.1023/b:narr.0000032647.41046.e7
9 https://doi.org/10.1002/2013wr013939
10 https://doi.org/10.1002/2017jb014331
11 https://doi.org/10.1016/j.apenergy.2013.01.033
12 https://doi.org/10.1016/j.apenergy.2015.01.117
13 https://doi.org/10.1016/j.geothermics.2009.06.002
14 https://doi.org/10.1016/j.geothermics.2010.12.002
15 https://doi.org/10.1016/j.jhydrol.2012.12.048
16 https://doi.org/10.1016/j.renene.2008.01.021
17 https://doi.org/10.1016/j.renene.2010.10.025
18 https://doi.org/10.1016/j.renene.2011.11.001
19 https://doi.org/10.1016/j.renene.2012.10.028
20 https://doi.org/10.1016/j.renene.2016.07.005
21 https://doi.org/10.1016/j.rser.2015.05.061
22 https://doi.org/10.1111/j.1745-6584.2010.00791.x
23 https://doi.org/10.2113/jeeg12.4.307
24 https://doi.org/10.21278/tof.42si104
25 https://doi.org/10.3390/en11020366
26 https://doi.org/10.3390/hydrology4020021
27 https://doi.org/10.3390/s110707082
28 schema:datePublished 2019-01-11
29 schema:datePublishedReg 2019-01-11
30 schema:description A field method was developed to assess subsurface thermal conductivity profiles and groundwater fluxes from manual temperature logs using a wired probe lowered into a U-pipe during the recovery period of a thermal response test (TRT). Temperature and depth were recorded with a wired temperature and pressure data logger, which triggers a water level rise into a U-pipe. Depth correction methods were introduced and validated using subsurface temperature at equilibrium state measured into U-pipe. Wired temperature logs from recovery period after drilling operation were used to evaluate undisturbed subsurface temperature and during a conventional TRT to assess a thermal conductivity profile with approximately 1 m vertical spatial resolution. TRT analysis was improved by combining the infinite line source equation with the temporal superposition principle and slope method. The results reveal zones of higher apparent thermal conductivity identified as fractured zones in which Darcy’s flux has been quantified using the Peclet number analysis. The average subsurface thermal conductivity inferred with this method was 1.79 W m−1 K−1, similar to 1.75 W m−1 K−1 obtained using conventional TRT analysis. The estimated Darcy’s flux in the fracture zones is 3 × 10−9 to 1 × 10−8 m s−1. This method, based on wired temperature profiling along the borehole, provides a new approach using simple equipment and available analytical solutions to obtain more information from conventional TRT analysis.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1356910
35 schema:name Improving thermal response tests with wireline temperature logs to evaluate ground thermal conductivity profiles and groundwater fluxes
36 schema:pagination 1-15
37 schema:productId N9753e98fa87c4acaa70c78a9f6ba7e83
38 Naf996538cc8b4b4ea13b5f5186c2a7f5
39 Nb19108a8819741a69cce7c2ae24b0789
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111361253
41 https://doi.org/10.1007/s00231-018-2532-y
42 schema:sdDatePublished 2019-04-11T08:39
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ne43e21663e6c4f83a4e8a5d6041ee0fb
45 schema:url https://link.springer.com/10.1007%2Fs00231-018-2532-y
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N04c44112532c4ce39ca737e54b719638 rdf:first sg:person.0734422506.37
50 rdf:rest N95c1fa14803b4577b5f87d18898638cf
51 N1b449ce8a4e44c258c55587762ed675c rdf:first sg:person.013430611034.55
52 rdf:rest N04c44112532c4ce39ca737e54b719638
53 N95c1fa14803b4577b5f87d18898638cf rdf:first sg:person.01362101111.74
54 rdf:rest rdf:nil
55 N9753e98fa87c4acaa70c78a9f6ba7e83 schema:name dimensions_id
56 schema:value pub.1111361253
57 rdf:type schema:PropertyValue
58 Naf996538cc8b4b4ea13b5f5186c2a7f5 schema:name doi
59 schema:value 10.1007/s00231-018-2532-y
60 rdf:type schema:PropertyValue
61 Nb19108a8819741a69cce7c2ae24b0789 schema:name readcube_id
62 schema:value 008f91998e5f92a928c7cb0da222b6dd15276bb98561cb745ae7987c162cd11c
63 rdf:type schema:PropertyValue
64 Ne43e21663e6c4f83a4e8a5d6041ee0fb schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
67 schema:name Earth Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Geography and Environmental Geoscience
71 rdf:type schema:DefinedTerm
72 sg:journal.1356910 schema:issn 0947-7411
73 1432-1181
74 schema:name Heat and Mass Transfer
75 rdf:type schema:Periodical
76 sg:person.013430611034.55 schema:affiliation https://www.grid.ac/institutes/grid.418084.1
77 schema:familyName Koubikana Pambou
78 schema:givenName Claude Hugo
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430611034.55
80 rdf:type schema:Person
81 sg:person.01362101111.74 schema:affiliation https://www.grid.ac/institutes/grid.459234.d
82 schema:familyName Lamarche
83 schema:givenName Louis
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362101111.74
85 rdf:type schema:Person
86 sg:person.0734422506.37 schema:affiliation https://www.grid.ac/institutes/grid.418084.1
87 schema:familyName Raymond
88 schema:givenName Jasmin
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734422506.37
90 rdf:type schema:Person
91 sg:pub.10.1007/s00231-002-0295-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013259285
92 https://doi.org/10.1007/s00231-002-0295-x
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00231-007-0282-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035057935
95 https://doi.org/10.1007/s00231-007-0282-3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10040-017-1701-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099706222
98 https://doi.org/10.1007/s10040-017-1701-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s12665-014-3310-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035956762
101 https://doi.org/10.1007/s12665-014-3310-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/b:narr.0000032647.41046.e7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021276879
104 https://doi.org/10.1023/b:narr.0000032647.41046.e7
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/2013wr013939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022074617
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/2017jb014331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086028455
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.apenergy.2013.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010709474
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.apenergy.2015.01.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035700854
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.geothermics.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049791194
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.geothermics.2010.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012693862
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jhydrol.2012.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023153496
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.renene.2008.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024693372
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.renene.2010.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005892904
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.renene.2011.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050530263
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.renene.2012.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033700971
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.renene.2016.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049754119
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.rser.2015.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017403878
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/j.1745-6584.2010.00791.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028201305
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2113/jeeg12.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068924619
135 rdf:type schema:CreativeWork
136 https://doi.org/10.21278/tof.42si104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103896730
137 rdf:type schema:CreativeWork
138 https://doi.org/10.3390/en11020366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100853230
139 rdf:type schema:CreativeWork
140 https://doi.org/10.3390/hydrology4020021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084435608
141 rdf:type schema:CreativeWork
142 https://doi.org/10.3390/s110707082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014520897
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.418084.1 schema:alternateName Institut National de la Recherche Scientifique
145 schema:name Institut national de la recherche scientifique, Centre Eau Terre Envrionnement, Québec, Québec, Canada
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.459234.d schema:alternateName École de Technologie Supérieure
148 schema:name École de Technologie Supérieure, Département de génie mécanique, Montréal, Québec, Canada
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...