Corrected quasi one-dimensional heat conduction equation for the analysis of straight fins of uniform profile View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Antonio Campo, Antonio Acosta-Iborra

ABSTRACT

Justification of the quasi one-dimensionality assumption in the analysis of fins of various shapes has been traditionally based on the criterion that fins have large slenderness ratios, i.e., large length and small thickness. This simplistic approach is based on a mere geometric consideration that obviates the implications of the two-dimensional heat paths in the axial and transversal directions that occurs in fins. Beginning with the formal differential formulation of the two-dimensional heat conduction equation for straight fins of uniform profile and the appropriate boundary conditions, the central objective of the present paper is to develop a systematic mathematical procedure that revolves around a new corrected quasi one-dimensional heat conduction equation that is more physically sound. The step-by-step mathematical development depends on two controlling parameters: (1) a thermo-geometric parameter, i.e., the transverse Biot number based on the half-thickness, and (2) a geometric parameter, i.e., the slenderness ratio. The computed two-dimensional heat transfer rates clearly demonstrate that the corrected quasi one-dimensional heat conduction equation captures the two-dimensional heat paths flawlessly and as a direct result is better than the standard quasi one-dimensional heat conduction equation. The discrepancy between the corrected quasi one-dimensional and the standard quasi one-dimensional heat transfer rates is of the order of 10%. More... »

PAGES

1023-1031

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-018-2485-1

DOI

http://dx.doi.org/10.1007/s00231-018-2485-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107273082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Vermont", 
          "id": "https://www.grid.ac/institutes/grid.59062.38", 
          "name": [
            "Department of Mechanical Engineering, The University of Vermont, 55455, Burlington, VT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campo", 
        "givenName": "Antonio", 
        "id": "sg:person.012540273737.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540273737.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Departamento de Ingenier\u00eda T\u00e9rmica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911, Legan\u00e9s, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Acosta-Iborra", 
        "givenName": "Antonio", 
        "id": "sg:person.013271673317.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271673317.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/01457639008939722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000007259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.05.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004768406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457639208939780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(85)90250-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021445142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0142-727x(92)90042-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0142-727x(92)90042-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032633158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(88)90043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032907160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(88)90043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032907160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(93)80084-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033507622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90247-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043140625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90247-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043140625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3449636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062127386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3450110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062127854"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Justification of the quasi one-dimensionality assumption in the analysis of fins of various shapes has been traditionally based on the criterion that fins have large slenderness ratios, i.e., large length and small thickness. This simplistic approach is based on a mere geometric consideration that obviates the implications of the two-dimensional heat paths in the axial and transversal directions that occurs in fins. Beginning with the formal differential formulation of the two-dimensional heat conduction equation for straight fins of uniform profile and the appropriate boundary conditions, the central objective of the present paper is to develop a systematic mathematical procedure that revolves around a new corrected quasi one-dimensional heat conduction equation that is more physically sound. The step-by-step mathematical development depends on two controlling parameters: (1) a thermo-geometric parameter, i.e., the transverse Biot number based on the half-thickness, and (2) a geometric parameter, i.e., the slenderness ratio. The computed two-dimensional heat transfer rates clearly demonstrate that the corrected quasi one-dimensional heat conduction equation captures the two-dimensional heat paths flawlessly and as a direct result is better than the standard quasi one-dimensional heat conduction equation. The discrepancy between the corrected quasi one-dimensional and the standard quasi one-dimensional heat transfer rates is of the order of 10%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-018-2485-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Corrected quasi one-dimensional heat conduction equation for the analysis of straight fins of uniform profile", 
    "pagination": "1023-1031", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1809004d62251c975fa41e5f7ba43f5fd4e640177e8b10e0c30e163e5600ef6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-018-2485-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107273082"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-018-2485-1", 
      "https://app.dimensions.ai/details/publication/pub.1107273082"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68962_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00231-018-2485-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2485-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2485-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2485-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2485-1'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-018-2485-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7166aaaffd5344728f5a37682defeb0c
4 schema:citation https://doi.org/10.1016/0017-9310(85)90250-9
5 https://doi.org/10.1016/0017-9310(89)90247-0
6 https://doi.org/10.1016/0017-9310(93)80084-8
7 https://doi.org/10.1016/0142-727x(92)90042-8
8 https://doi.org/10.1016/0894-1777(88)90043-x
9 https://doi.org/10.1016/j.applthermaleng.2016.05.126
10 https://doi.org/10.1080/01457639008939722
11 https://doi.org/10.1080/01457639208939780
12 https://doi.org/10.1115/1.3449636
13 https://doi.org/10.1115/1.3450110
14 schema:datePublished 2019-04
15 schema:datePublishedReg 2019-04-01
16 schema:description Justification of the quasi one-dimensionality assumption in the analysis of fins of various shapes has been traditionally based on the criterion that fins have large slenderness ratios, i.e., large length and small thickness. This simplistic approach is based on a mere geometric consideration that obviates the implications of the two-dimensional heat paths in the axial and transversal directions that occurs in fins. Beginning with the formal differential formulation of the two-dimensional heat conduction equation for straight fins of uniform profile and the appropriate boundary conditions, the central objective of the present paper is to develop a systematic mathematical procedure that revolves around a new corrected quasi one-dimensional heat conduction equation that is more physically sound. The step-by-step mathematical development depends on two controlling parameters: (1) a thermo-geometric parameter, i.e., the transverse Biot number based on the half-thickness, and (2) a geometric parameter, i.e., the slenderness ratio. The computed two-dimensional heat transfer rates clearly demonstrate that the corrected quasi one-dimensional heat conduction equation captures the two-dimensional heat paths flawlessly and as a direct result is better than the standard quasi one-dimensional heat conduction equation. The discrepancy between the corrected quasi one-dimensional and the standard quasi one-dimensional heat transfer rates is of the order of 10%.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2e730f9f38874f8692d716215a3d4d19
21 Ndca531a3be854b84b4d51a747537c25a
22 sg:journal.1356910
23 schema:name Corrected quasi one-dimensional heat conduction equation for the analysis of straight fins of uniform profile
24 schema:pagination 1023-1031
25 schema:productId N13124fe7830e4e34a40804f76698ccd8
26 N1742c60a9dd04da69b5ae5c0ebc4f13c
27 N2175d2aefa434ab88685eb31aea8c123
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273082
29 https://doi.org/10.1007/s00231-018-2485-1
30 schema:sdDatePublished 2019-04-11T13:24
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N6e6090507aed4722afc7d631d9442893
33 schema:url https://link.springer.com/10.1007%2Fs00231-018-2485-1
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N13124fe7830e4e34a40804f76698ccd8 schema:name dimensions_id
38 schema:value pub.1107273082
39 rdf:type schema:PropertyValue
40 N1742c60a9dd04da69b5ae5c0ebc4f13c schema:name doi
41 schema:value 10.1007/s00231-018-2485-1
42 rdf:type schema:PropertyValue
43 N2175d2aefa434ab88685eb31aea8c123 schema:name readcube_id
44 schema:value e1809004d62251c975fa41e5f7ba43f5fd4e640177e8b10e0c30e163e5600ef6
45 rdf:type schema:PropertyValue
46 N2e730f9f38874f8692d716215a3d4d19 schema:issueNumber 4
47 rdf:type schema:PublicationIssue
48 N6e6090507aed4722afc7d631d9442893 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N7166aaaffd5344728f5a37682defeb0c rdf:first sg:person.012540273737.28
51 rdf:rest Ncd808a16bc004c229d7d3c3e8da10899
52 Ncd808a16bc004c229d7d3c3e8da10899 rdf:first sg:person.013271673317.11
53 rdf:rest rdf:nil
54 Ndca531a3be854b84b4d51a747537c25a schema:volumeNumber 55
55 rdf:type schema:PublicationVolume
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1356910 schema:issn 0947-7411
63 1432-1181
64 schema:name Heat and Mass Transfer
65 rdf:type schema:Periodical
66 sg:person.012540273737.28 schema:affiliation https://www.grid.ac/institutes/grid.59062.38
67 schema:familyName Campo
68 schema:givenName Antonio
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540273737.28
70 rdf:type schema:Person
71 sg:person.013271673317.11 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
72 schema:familyName Acosta-Iborra
73 schema:givenName Antonio
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013271673317.11
75 rdf:type schema:Person
76 https://doi.org/10.1016/0017-9310(85)90250-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021445142
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0017-9310(89)90247-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043140625
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0017-9310(93)80084-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033507622
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0142-727x(92)90042-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032633158
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0894-1777(88)90043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032907160
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.applthermaleng.2016.05.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004768406
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1080/01457639008939722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000007259
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1080/01457639208939780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014836952
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1115/1.3449636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062127386
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1115/1.3450110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062127854
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.59062.38 schema:alternateName University of Vermont
97 schema:name Department of Mechanical Engineering, The University of Vermont, 55455, Burlington, VT, USA
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
100 schema:name Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911, Leganés, Madrid, Spain
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...