Effect of hydraulic diameter on flow boiling in rectangular microchannels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Burak Markal, Orhan Aydin, Mete Avci

ABSTRACT

An experimental study is conducted to investigate the effect of hydraulic diameter on the saturated flow boiling characteristics of deionized water in parallel rectangular microchannels. Experiments have been performed for the mass fluxes of 51, 65, 78 and 93 kg m−2 s−1, and the hydraulic diameters of 100, 150, 200 and 250 μm. The wall heat flux ranges from 35.9 to 105.6 kW m−2. To eliminate the effect of aspect ratio and to address clearly the effect of hydraulic diameter, all the channels are designed with square cross section. Flow visualization studies are performed for a better understanding of the underlying physical phenomena. Effects of heat flux, mass flux and vapor quality on the heat transfer and total pressure drop have been investigated, too. It is concluded that hydraulic diameter has significant influence on both of the local two phase heat transfer coefficient and the total pressure drop. More... »

PAGES

1033-1044

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-018-2482-4

DOI

http://dx.doi.org/10.1007/s00231-018-2482-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107306330


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Recep Tayyip Erdo\u011fan University", 
          "id": "https://www.grid.ac/institutes/grid.412216.2", 
          "name": [
            "Department of Energy Systems Engineering, Recep Tayyip Erdogan University, 53100, Rize, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Markal", 
        "givenName": "Burak", 
        "id": "sg:person.014130551347.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130551347.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karadeniz Technical University", 
          "id": "https://www.grid.ac/institutes/grid.31564.35", 
          "name": [
            "Department of Mechanical Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aydin", 
        "givenName": "Orhan", 
        "id": "sg:person.012554432727.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012554432727.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karadeniz Technical University", 
          "id": "https://www.grid.ac/institutes/grid.31564.35", 
          "name": [
            "Department of Mechanical Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avci", 
        "givenName": "Mete", 
        "id": "sg:person.010102550647.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102550647.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cej.2016.08.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000957296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003496605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2015.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005185325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.10.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005494046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007065056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007999648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.09.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008872606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.09.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008872606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.09.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008872606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.09.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008872606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011956404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012047207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016326882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016735760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017980000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018029866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916152.2016.1161677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020954187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2003.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021254688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2014.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021914276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.02.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024553531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2014.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025066462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026060584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026088673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029269256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033486565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036105996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036129671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038921700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039217093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457632.2016.1255038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043818991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044498443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047968875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052501230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1643090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062073453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1756145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062074071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2754944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062080620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijex.2012.045867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067456556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090364863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091050776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457632.2017.1404552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099926024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457632.2017.1404552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099926024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "An experimental study is conducted to investigate the effect of hydraulic diameter on the saturated flow boiling characteristics of deionized water in parallel rectangular microchannels. Experiments have been performed for the mass fluxes of 51, 65, 78 and 93 kg m\u22122 s\u22121, and the hydraulic diameters of 100, 150, 200 and 250 \u03bcm. The wall heat flux ranges from 35.9 to 105.6 kW m\u22122. To eliminate the effect of aspect ratio and to address clearly the effect of hydraulic diameter, all the channels are designed with square cross section. Flow visualization studies are performed for a better understanding of the underlying physical phenomena. Effects of heat flux, mass flux and vapor quality on the heat transfer and total pressure drop have been investigated, too. It is concluded that hydraulic diameter has significant influence on both of the local two phase heat transfer coefficient and the total pressure drop.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-018-2482-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Effect of hydraulic diameter on flow boiling in rectangular microchannels", 
    "pagination": "1033-1044", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c4a1769fea49db91d0fc8505d9b8d55827d66b5671a31617cc400e0ea44572b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-018-2482-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107306330"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-018-2482-4", 
      "https://app.dimensions.ai/details/publication/pub.1107306330"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68978_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00231-018-2482-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2482-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2482-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2482-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2482-4'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-018-2482-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N6b72d268bdd04691a631b14014f68074
4 schema:citation https://doi.org/10.1016/j.applthermaleng.2015.09.097
5 https://doi.org/10.1016/j.applthermaleng.2015.10.084
6 https://doi.org/10.1016/j.cej.2003.10.028
7 https://doi.org/10.1016/j.cej.2016.08.034
8 https://doi.org/10.1016/j.enconman.2015.02.072
9 https://doi.org/10.1016/j.expthermflusci.2014.02.017
10 https://doi.org/10.1016/j.expthermflusci.2015.01.015
11 https://doi.org/10.1016/j.expthermflusci.2015.02.020
12 https://doi.org/10.1016/j.expthermflusci.2017.01.011
13 https://doi.org/10.1016/j.expthermflusci.2017.08.001
14 https://doi.org/10.1016/j.icheatmasstransfer.2014.04.012
15 https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.012
16 https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013
17 https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.016
18 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.012
19 https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044
20 https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.050
21 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.012
22 https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.045
23 https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.036
24 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.080
25 https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.080
26 https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.024
27 https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.128
28 https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003
29 https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.005
30 https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.009
31 https://doi.org/10.1016/j.ijrefrig.2015.12.013
32 https://doi.org/10.1016/j.ijthermalsci.2009.12.016
33 https://doi.org/10.1016/j.ijthermalsci.2014.07.005
34 https://doi.org/10.1016/j.ijthermalsci.2015.11.006
35 https://doi.org/10.1080/01457632.2016.1255038
36 https://doi.org/10.1080/01457632.2017.1404552
37 https://doi.org/10.1080/08916152.2016.1161677
38 https://doi.org/10.1115/1.1643090
39 https://doi.org/10.1115/1.1756145
40 https://doi.org/10.1115/1.2754944
41 https://doi.org/10.1504/ijex.2012.045867
42 schema:datePublished 2019-04
43 schema:datePublishedReg 2019-04-01
44 schema:description An experimental study is conducted to investigate the effect of hydraulic diameter on the saturated flow boiling characteristics of deionized water in parallel rectangular microchannels. Experiments have been performed for the mass fluxes of 51, 65, 78 and 93 kg m−2 s−1, and the hydraulic diameters of 100, 150, 200 and 250 μm. The wall heat flux ranges from 35.9 to 105.6 kW m−2. To eliminate the effect of aspect ratio and to address clearly the effect of hydraulic diameter, all the channels are designed with square cross section. Flow visualization studies are performed for a better understanding of the underlying physical phenomena. Effects of heat flux, mass flux and vapor quality on the heat transfer and total pressure drop have been investigated, too. It is concluded that hydraulic diameter has significant influence on both of the local two phase heat transfer coefficient and the total pressure drop.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N19b813ed960d436f9c66d507dc7c0118
49 Nc569fa015bea4e098616f0a3b8036057
50 sg:journal.1356910
51 schema:name Effect of hydraulic diameter on flow boiling in rectangular microchannels
52 schema:pagination 1033-1044
53 schema:productId N330c06dc1c184596862aac9c53e7d89f
54 N3c889a9c1421499c8d4cb8035bec8322
55 Nbb2340d3bc334d0ba2fbf1f921a72d2d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107306330
57 https://doi.org/10.1007/s00231-018-2482-4
58 schema:sdDatePublished 2019-04-11T13:25
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N01a3f991471a45b289b8cbaceb95d7d7
61 schema:url https://link.springer.com/10.1007%2Fs00231-018-2482-4
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N01a3f991471a45b289b8cbaceb95d7d7 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N19b813ed960d436f9c66d507dc7c0118 schema:volumeNumber 55
68 rdf:type schema:PublicationVolume
69 N330c06dc1c184596862aac9c53e7d89f schema:name dimensions_id
70 schema:value pub.1107306330
71 rdf:type schema:PropertyValue
72 N3c889a9c1421499c8d4cb8035bec8322 schema:name readcube_id
73 schema:value 4c4a1769fea49db91d0fc8505d9b8d55827d66b5671a31617cc400e0ea44572b
74 rdf:type schema:PropertyValue
75 N5541e72e16504ca4b00e1d4430df98f9 rdf:first sg:person.010102550647.93
76 rdf:rest rdf:nil
77 N6b72d268bdd04691a631b14014f68074 rdf:first sg:person.014130551347.13
78 rdf:rest Na06518ee97004a489ecfb861b78dd8a4
79 Na06518ee97004a489ecfb861b78dd8a4 rdf:first sg:person.012554432727.04
80 rdf:rest N5541e72e16504ca4b00e1d4430df98f9
81 Nbb2340d3bc334d0ba2fbf1f921a72d2d schema:name doi
82 schema:value 10.1007/s00231-018-2482-4
83 rdf:type schema:PropertyValue
84 Nc569fa015bea4e098616f0a3b8036057 schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
90 schema:name Interdisciplinary Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1356910 schema:issn 0947-7411
93 1432-1181
94 schema:name Heat and Mass Transfer
95 rdf:type schema:Periodical
96 sg:person.010102550647.93 schema:affiliation https://www.grid.ac/institutes/grid.31564.35
97 schema:familyName Avci
98 schema:givenName Mete
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102550647.93
100 rdf:type schema:Person
101 sg:person.012554432727.04 schema:affiliation https://www.grid.ac/institutes/grid.31564.35
102 schema:familyName Aydin
103 schema:givenName Orhan
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012554432727.04
105 rdf:type schema:Person
106 sg:person.014130551347.13 schema:affiliation https://www.grid.ac/institutes/grid.412216.2
107 schema:familyName Markal
108 schema:givenName Burak
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130551347.13
110 rdf:type schema:Person
111 https://doi.org/10.1016/j.applthermaleng.2015.09.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008872606
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.applthermaleng.2015.10.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005494046
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cej.2003.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021254688
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.cej.2016.08.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000957296
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.enconman.2015.02.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024553531
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.expthermflusci.2014.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021914276
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.expthermflusci.2015.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026088673
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.expthermflusci.2015.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003496605
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.expthermflusci.2017.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052501230
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.expthermflusci.2017.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091050776
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.icheatmasstransfer.2014.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033486565
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011956404
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044498443
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074386
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017980000
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018029866
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016326882
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047968875
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036129671
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038921700
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029269256
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007065056
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012047207
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090364863
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026060584
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007999648
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036105996
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijrefrig.2015.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005185325
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijthermalsci.2009.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039217093
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijthermalsci.2014.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025066462
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijthermalsci.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016735760
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/01457632.2016.1255038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043818991
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/01457632.2017.1404552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099926024
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/08916152.2016.1161677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020954187
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1115/1.1643090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062073453
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1115/1.1756145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062074071
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1115/1.2754944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062080620
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1504/ijex.2012.045867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067456556
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.31564.35 schema:alternateName Karadeniz Technical University
188 schema:name Department of Mechanical Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.412216.2 schema:alternateName Recep Tayyip Erdoğan University
191 schema:name Department of Energy Systems Engineering, Recep Tayyip Erdogan University, 53100, Rize, Turkey
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...