Investigation on flow condensation of refrigerant in annulus of smooth and enhanced tube-in-tube heat exchanger View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Jing-xiang Chen, Xu Chen, Yan He, David Kukulka, Wei Li, Li Liu, Lianxiang Ma, Rick Smith, Bin Zhang

ABSTRACT

An experimental investigation of R22 and R410A condensation outside a horizontal smooth tube, a herringbone tube and a newly developed 3D enhanced heat transfer (1EHT) dimple tube has been conducted. The herringbone tube has a fin root diameter of 11.43 mm, a helical angle of 21.3 °, 48 fins with a fin height of 0.262 mm and an apex angle of 36 °; the 1EHT tube has an inner diameter of 11.5 mm with a dimple enhancement; while the smooth tube has an inner diameter of 11.43 mm; and all the tubes have an outer diameter of 12.7 mm. Experiments were performed for a constant saturation temperature of 45°C; with a constant inlet vapor quality of 0.8 and a constant outlet vapor quality of 0.1; for a mass flux ranging from 5 kg/(m2 s) to 250 kg/(m2 s). In addition, annular side condensation experiments were performed using an outer shell tube with outer diameters of 17 mm and 25.4 mm. Heat transfer performance varied with mass flux. At a low mass flux the enhanced dimple tube had the smallest heat transfer coefficient; while at higher values of mass flux, the smooth tube had the smallest heat transfer coefficient. Finally, the effect of average vapor quality on the heat transfer coefficient was also investigated. Characteristic analysis was performed in order to account for the various phenomena found in this series of experiments. Annular side heat transfer performance combined with pressure drop measurements reveal that the herringbone tube generally had a better heat transfer performance than the other tubes, and can be a good choice for use in annular side condensation applications. More... »

PAGES

1-12

References to SciGraph publications

  • 1954-01. Hautkondensation an feingewellten Oberflächen bei Berücksichtigung der Oberflächenspannungen in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00231-018-2406-3

    DOI

    http://dx.doi.org/10.1007/s00231-018-2406-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105710089


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Energy Engineering, Zhejiang University, 310027, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Jing-xiang", 
            "id": "sg:person.015740273150.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015740273150.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Energy Engineering, Zhejiang University, 310027, Hangzhou, People\u2019s Republic of China", 
                "Department of Energy Engineering, Collaborative Innovation Center of Advanced Aero-Engine, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Xu", 
            "id": "sg:person.016614230254.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016614230254.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412610.0", 
              "name": [
                "College of Electromechanical Engineering, Qingdao University of Science and Technology, 266061, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Yan", 
            "id": "sg:person.015231433074.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231433074.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State University of New York", 
              "id": "https://www.grid.ac/institutes/grid.189747.4", 
              "name": [
                "Department of Mechanical Engineering Technology, State University of New York College at Buffalo, Buffalo, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kukulka", 
            "givenName": "David", 
            "id": "sg:person.010407453437.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010407453437.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Energy Engineering, Zhejiang University, 310027, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Wei", 
            "id": "sg:person.015741556172.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741556172.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412610.0", 
              "name": [
                "College of Electromechanical Engineering, Qingdao University of Science and Technology, 266061, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Li", 
            "id": "sg:person.013062462444.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062462444.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412610.0", 
              "name": [
                "College of Electromechanical Engineering, Qingdao University of Science and Technology, 266061, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Lianxiang", 
            "id": "sg:person.013636472074.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013636472074.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Vipertex, 658 Ohio Street, Buffalo, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Rick", 
            "id": "sg:person.011521621524.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521621524.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.412610.0", 
              "name": [
                "College of Electromechanical Engineering, Qingdao University of Science and Technology, 266061, Qingdao, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Bin", 
            "id": "sg:person.011165665735.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165665735.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijrefrig.2009.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007674264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrefrig.2009.12.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011947778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(94)90045-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014645883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(94)90045-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014645883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2011.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021195940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023435027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2013.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023996966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrefrig.2013.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024937109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.expthermflusci.2011.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035026426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(03)00389-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038393880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(03)00389-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038393880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2011.11.085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040930482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(03)00139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042291232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(03)00139-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042291232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01600263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043460215", 
              "https://doi.org/10.1007/bf01600263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045513794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(03)00140-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046826194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(03)00140-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046826194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(94)90122-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053729401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(94)90122-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053729401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1459728", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062070289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3247423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062112183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3247424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062112184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3248046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062112318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4026370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062151686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4034552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062159829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s2010132515500145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063027064"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "An experimental investigation of R22 and R410A condensation outside a horizontal smooth tube, a herringbone tube and a newly developed 3D enhanced heat transfer (1EHT) dimple tube has been conducted. The herringbone tube has a fin root diameter of 11.43 mm, a helical angle of 21.3 \u00b0, 48 fins with a fin height of 0.262 mm and an apex angle of 36 \u00b0; the 1EHT tube has an inner diameter of 11.5 mm with a dimple enhancement; while the smooth tube has an inner diameter of 11.43 mm; and all the tubes have an outer diameter of 12.7 mm. Experiments were performed for a constant saturation temperature of 45\u00b0C; with a constant inlet vapor quality of 0.8 and a constant outlet vapor quality of 0.1; for a mass flux ranging from 5 kg/(m2 s) to 250 kg/(m2 s). In addition, annular side condensation experiments were performed using an outer shell tube with outer diameters of 17 mm and 25.4 mm. Heat transfer performance varied with mass flux. At a low mass flux the enhanced dimple tube had the smallest heat transfer coefficient; while at higher values of mass flux, the smooth tube had the smallest heat transfer coefficient. Finally, the effect of average vapor quality on the heat transfer coefficient was also investigated. Characteristic analysis was performed in order to account for the various phenomena found in this series of experiments. Annular side heat transfer performance combined with pressure drop measurements reveal that the herringbone tube generally had a better heat transfer performance than the other tubes, and can be a good choice for use in annular side condensation applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00231-018-2406-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1356910", 
            "issn": [
              "0947-7411", 
              "1432-1181"
            ], 
            "name": "Heat and Mass Transfer", 
            "type": "Periodical"
          }
        ], 
        "name": "Investigation on flow condensation of refrigerant in annulus of smooth and enhanced tube-in-tube heat exchanger", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c0295085e025aab7393bf370106764eb70aa4d0559260e3853da9a726067635e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00231-018-2406-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105710089"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00231-018-2406-3", 
          "https://app.dimensions.ai/details/publication/pub.1105710089"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00231-018-2406-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2406-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2406-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2406-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2406-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      21 PREDICATES      47 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00231-018-2406-3 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N5273490777d14d8dafe4200f64af5602
    4 schema:citation sg:pub.10.1007/bf01600263
    5 https://doi.org/10.1016/0017-9310(94)90045-0
    6 https://doi.org/10.1016/0017-9310(94)90122-8
    7 https://doi.org/10.1016/j.apenergy.2011.11.085
    8 https://doi.org/10.1016/j.applthermaleng.2011.08.017
    9 https://doi.org/10.1016/j.applthermaleng.2013.08.013
    10 https://doi.org/10.1016/j.expthermflusci.2011.09.008
    11 https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.063
    12 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.115
    13 https://doi.org/10.1016/j.ijrefrig.2009.09.006
    14 https://doi.org/10.1016/j.ijrefrig.2009.12.033
    15 https://doi.org/10.1016/j.ijrefrig.2013.11.018
    16 https://doi.org/10.1016/s0017-9310(03)00139-x
    17 https://doi.org/10.1016/s0017-9310(03)00140-6
    18 https://doi.org/10.1016/s0017-9310(03)00389-2
    19 https://doi.org/10.1115/1.1459728
    20 https://doi.org/10.1115/1.3247423
    21 https://doi.org/10.1115/1.3247424
    22 https://doi.org/10.1115/1.3248046
    23 https://doi.org/10.1115/1.4026370
    24 https://doi.org/10.1115/1.4034552
    25 https://doi.org/10.1142/s2010132515500145
    26 schema:datePublished 2019-01
    27 schema:datePublishedReg 2019-01-01
    28 schema:description An experimental investigation of R22 and R410A condensation outside a horizontal smooth tube, a herringbone tube and a newly developed 3D enhanced heat transfer (1EHT) dimple tube has been conducted. The herringbone tube has a fin root diameter of 11.43 mm, a helical angle of 21.3 °, 48 fins with a fin height of 0.262 mm and an apex angle of 36 °; the 1EHT tube has an inner diameter of 11.5 mm with a dimple enhancement; while the smooth tube has an inner diameter of 11.43 mm; and all the tubes have an outer diameter of 12.7 mm. Experiments were performed for a constant saturation temperature of 45°C; with a constant inlet vapor quality of 0.8 and a constant outlet vapor quality of 0.1; for a mass flux ranging from 5 kg/(m2 s) to 250 kg/(m2 s). In addition, annular side condensation experiments were performed using an outer shell tube with outer diameters of 17 mm and 25.4 mm. Heat transfer performance varied with mass flux. At a low mass flux the enhanced dimple tube had the smallest heat transfer coefficient; while at higher values of mass flux, the smooth tube had the smallest heat transfer coefficient. Finally, the effect of average vapor quality on the heat transfer coefficient was also investigated. Characteristic analysis was performed in order to account for the various phenomena found in this series of experiments. Annular side heat transfer performance combined with pressure drop measurements reveal that the herringbone tube generally had a better heat transfer performance than the other tubes, and can be a good choice for use in annular side condensation applications.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf sg:journal.1356910
    33 schema:name Investigation on flow condensation of refrigerant in annulus of smooth and enhanced tube-in-tube heat exchanger
    34 schema:pagination 1-12
    35 schema:productId N0e546a62eda04005bb69e1741489f9f9
    36 N35d426b7afbe4244bbc6b030925e0ecd
    37 N3ecf8032d29b43289942701fcec48e85
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105710089
    39 https://doi.org/10.1007/s00231-018-2406-3
    40 schema:sdDatePublished 2019-04-10T23:18
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nd7f1e5e3a8244526a5f0b0b906893a90
    43 schema:url http://link.springer.com/10.1007/s00231-018-2406-3
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N06ef02dde26f4cca833cc03aee2cf293 rdf:first sg:person.016614230254.51
    48 rdf:rest Ned1b73a6a95643fbbd372f15e70b118a
    49 N0e2d2329ccd04468b7035055701152bf rdf:first sg:person.013636472074.61
    50 rdf:rest N92cfd2d31e4f40558292dc1d4c4f0a49
    51 N0e546a62eda04005bb69e1741489f9f9 schema:name readcube_id
    52 schema:value c0295085e025aab7393bf370106764eb70aa4d0559260e3853da9a726067635e
    53 rdf:type schema:PropertyValue
    54 N14ed7f4520134cb1a6117fe0977662a7 rdf:first sg:person.011165665735.10
    55 rdf:rest rdf:nil
    56 N35d426b7afbe4244bbc6b030925e0ecd schema:name doi
    57 schema:value 10.1007/s00231-018-2406-3
    58 rdf:type schema:PropertyValue
    59 N3b2b00b7f7be4877bcd118ef9a6c4b87 rdf:first sg:person.015741556172.37
    60 rdf:rest Na07f7cdd603143e9954a82905eebb421
    61 N3ecf8032d29b43289942701fcec48e85 schema:name dimensions_id
    62 schema:value pub.1105710089
    63 rdf:type schema:PropertyValue
    64 N4b2e59c66e584915968921920fcf3c47 schema:name Vipertex, 658 Ohio Street, Buffalo, NY, USA
    65 rdf:type schema:Organization
    66 N5273490777d14d8dafe4200f64af5602 rdf:first sg:person.015740273150.16
    67 rdf:rest N06ef02dde26f4cca833cc03aee2cf293
    68 N92cfd2d31e4f40558292dc1d4c4f0a49 rdf:first sg:person.011521621524.34
    69 rdf:rest N14ed7f4520134cb1a6117fe0977662a7
    70 Na07f7cdd603143e9954a82905eebb421 rdf:first sg:person.013062462444.44
    71 rdf:rest N0e2d2329ccd04468b7035055701152bf
    72 Nd7f1e5e3a8244526a5f0b0b906893a90 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Ne71122027900450ab450d97bcabc2f4f rdf:first sg:person.010407453437.21
    75 rdf:rest N3b2b00b7f7be4877bcd118ef9a6c4b87
    76 Ned1b73a6a95643fbbd372f15e70b118a rdf:first sg:person.015231433074.08
    77 rdf:rest Ne71122027900450ab450d97bcabc2f4f
    78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Engineering
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Interdisciplinary Engineering
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1356910 schema:issn 0947-7411
    85 1432-1181
    86 schema:name Heat and Mass Transfer
    87 rdf:type schema:Periodical
    88 sg:person.010407453437.21 schema:affiliation https://www.grid.ac/institutes/grid.189747.4
    89 schema:familyName Kukulka
    90 schema:givenName David
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010407453437.21
    92 rdf:type schema:Person
    93 sg:person.011165665735.10 schema:affiliation https://www.grid.ac/institutes/grid.412610.0
    94 schema:familyName Zhang
    95 schema:givenName Bin
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011165665735.10
    97 rdf:type schema:Person
    98 sg:person.011521621524.34 schema:affiliation N4b2e59c66e584915968921920fcf3c47
    99 schema:familyName Smith
    100 schema:givenName Rick
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521621524.34
    102 rdf:type schema:Person
    103 sg:person.013062462444.44 schema:affiliation https://www.grid.ac/institutes/grid.412610.0
    104 schema:familyName Liu
    105 schema:givenName Li
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013062462444.44
    107 rdf:type schema:Person
    108 sg:person.013636472074.61 schema:affiliation https://www.grid.ac/institutes/grid.412610.0
    109 schema:familyName Ma
    110 schema:givenName Lianxiang
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013636472074.61
    112 rdf:type schema:Person
    113 sg:person.015231433074.08 schema:affiliation https://www.grid.ac/institutes/grid.412610.0
    114 schema:familyName He
    115 schema:givenName Yan
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231433074.08
    117 rdf:type schema:Person
    118 sg:person.015740273150.16 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    119 schema:familyName Chen
    120 schema:givenName Jing-xiang
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015740273150.16
    122 rdf:type schema:Person
    123 sg:person.015741556172.37 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    124 schema:familyName Li
    125 schema:givenName Wei
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741556172.37
    127 rdf:type schema:Person
    128 sg:person.016614230254.51 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    129 schema:familyName Chen
    130 schema:givenName Xu
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016614230254.51
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf01600263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043460215
    134 https://doi.org/10.1007/bf01600263
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/0017-9310(94)90045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014645883
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/0017-9310(94)90122-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053729401
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.apenergy.2011.11.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040930482
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.applthermaleng.2011.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021195940
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.applthermaleng.2013.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023996966
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.expthermflusci.2011.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035026426
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023435027
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045513794
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.ijrefrig.2009.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007674264
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.ijrefrig.2009.12.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011947778
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.ijrefrig.2013.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024937109
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/s0017-9310(03)00139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042291232
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0017-9310(03)00140-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046826194
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/s0017-9310(03)00389-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038393880
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1115/1.1459728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070289
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1115/1.3247423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112183
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1115/1.3247424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112184
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1115/1.3248046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112318
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1115/1.4026370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062151686
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1115/1.4034552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062159829
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1142/s2010132515500145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063027064
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    179 schema:name Department of Energy Engineering, Collaborative Innovation Center of Advanced Aero-Engine, Zhejiang University, 310027, Hangzhou, China
    180 Department of Energy Engineering, Zhejiang University, 310027, Hangzhou, People’s Republic of China
    181 rdf:type schema:Organization
    182 https://www.grid.ac/institutes/grid.189747.4 schema:alternateName State University of New York
    183 schema:name Department of Mechanical Engineering Technology, State University of New York College at Buffalo, Buffalo, NY, USA
    184 rdf:type schema:Organization
    185 https://www.grid.ac/institutes/grid.412610.0 schema:alternateName Qingdao University of Science and Technology
    186 schema:name College of Electromechanical Engineering, Qingdao University of Science and Technology, 266061, Qingdao, China
    187 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...